ISSN: 2581-5679



# **Journal of Integral Sciences**

### [An International Open Access Journal]

Available at www.jisciences.com

### A REVIEW ON ALEXIA RARE SYNDROME

### B. Prema<sup>1</sup>, SK. Asma Parveen\*<sup>2</sup>, Yadala prapurna chandra<sup>3</sup>, M. Suchithra<sup>4</sup>

<sup>1</sup>IV Year B Pharmacy, Ratnam Institute of Pharmacy, Pidathapolur (V&P), Muthukur (M), SPSR Nellore District -524 346, Andhra Pradesh.

<sup>2</sup>Department of Pharmaceutical Analysis, Ratnam Institute of Pharmacy, Pidathapolur, (V&P), Muthukur (M), SPSR Nellore District-524 346, Andhra Pradesh.

<sup>3</sup>Principal and Professor, Department of Pharmacology, Ratnam Institute of Pharmacy, Pidathapolur (V & P), Muthukur (M), SPSR Nellore District-524 346, Andhra Pradesh.

<sup>4</sup>Professor & HOD, Department of Pharmaceutical Analysis, Ratnam Institute Of Pharmacy, Pidathapolur(V&P), Muthukur(M), SPSR Nellore District-524346, Andhra Pradesh.

Received: 18-08-2025 Revised: 11-09-2025 Accepted: 16-10-2025

#### **Abstract**

Alexia is a rare neurological disorder characterized by the acquired inability to read, often accompanied by spared writing and speech abilities. This condition primarily arises from focal brain lesions affecting regions critical for visual word recognition and reading, including the occipital cortex, corpus callosum, and angular gyrus. The disorder manifests in several clinical subtypes such as pure alexia, alexia with agraphia, frontal alexia, and posterior alexia, each associated with distinct neuroanatomical and pathological features. Etiologies range from vascular insults like ischemic stroke to traumatic brain injury, neurodegenerative diseases including Alzheimer's, as well as infectious, neoplastic, and demyelinating conditions. Clinically, alexia presents with deficits in word recognition and reading fluency while often preserving the ability to write and speak, accompanied by additional neurological symptoms such as hemianopia and aphasia. Diagnostic evaluation integrates detailed clinical and neuropsychological assessments with advanced neuroimaging techniques, including MRI, fMRI, and diffusion tensor imaging (DTI), to localize lesions and understand underlying mechanisms. Theoretical models of visual word processing and hemispheric language dominance provide frameworks for understanding alexia's cognitive underpinnings. Therapeutic interventions emphasize speech and language therapy supported by emerging digital tools, with novel approaches including neuromodulation via transcranial magnetic stimulation and direct current stimulation showing promise. Recent advances in connectomics, machine learning, and brain-computer interfaces offer innovative avenues for rehabilitation and recovery. Despite progress, challenges such as underdiagnosis, limited access to specialized care, and lack of standardized protocols remain. This review synthesizes current knowledge on alexia, integrating neurobiological and behavioural perspectives, and highlights directions for future research to enhance diagnosis, treatment, and patient outcomes.

Keywords: Alexia, pure alexia, neuroanatomy, reading disorders, rehabilitation, neuromodulation.

This article is licensed under a Creative Commons Attribution-Non-commercial 4.0 International License. Copyright © 2025 Author[s] retains the copyright of this article.



\*Corresponding Author SK. Asma Parveen

**DOI:** https://doi.org/10.37022/jis.v8i3.125

**Produced and Published by**South Asian Academic Publications

#### Introduction

### 1. Definition and Clinical Overview of Alexia

Alexia is an acquired neurological disorder characterized by a selective impairment in reading comprehension despite preserved writing ability, spoken language, and visual acuity. Commonly referred to as "word blindness" or "agnostic alexia," the condition reflects a disconnection in the brain's ability to process visually presented written language [1]. Patients with alexia can typically write and spell words correctly but are unable to read them, distinguishing the condition from peripheral visual impairments or illiteracy [2].



Fig 01: Image of Alexia (neurological disorder).

### 1.2 Historical Context: Discovery and Evolution of Understanding:

The first comprehensive description of alexia was documented by Joseph Jules Determine in 1892, who identified it as "word blindness" resulting from specific lesions in the left occipital lobe and splenium of the corpus callosum [3]. Later, in the mid-20th century, Norman Geschwind expanded the theoretical framework by associating alexia with disconnection syndromes, emphasizing the disruption of communication between visual and language-processing regions [4]. Subsequent advances in neuroimaging and cognitive neuropsychology have since refined the classification of alexia and elucidated its underlying neuroanatomical and cognitive mechanisms.

### 1.3 Comprehensive Classification and Terminology:

Alexia comprises several clinical subtypes, primarily including pure alexia (alexia without agraphia), alexia with agraphia, frontal alexia, and posterior alexia, alongside distinctions between developmental and acquired forms [1,5].

Pure alexia involves impaired visual word recognition with preserved writing and oral language abilities and is typically associated with lesions in the left occipital cortex and splenium of the corpus callosum [6].

Alexia with agraphia presents with concurrent reading and writing impairments, usually linked to damage in the angular gyrus.

Frontal and posterior alexias correspond to lesions in respective brain regions, each exhibiting unique neuropsychological profiles and reading deficits.

# 1.4 Epidemiology: Incidence, Prevalence, and Demographic Distribution:

Alexia is a rare disorder in general neurological practice, largely resulting from focal brain lesions—most commonly ischemic strokes or traumatic injuries affecting the language-dominant hemisphere [7]. Due to its dependence on specific lesion localization, precise epidemiological data are limited. However, its occurrence parallels the prevalence of cerebrovascular accidents and neurodegenerative conditions such as Alzheimer's disease and posterior cortical atrophy, predominantly affecting adults [8]. No significant sex-related differences have been reported.

# 1.5 Significance of Alexia as a Rare but Insightful Neurological Disorder:

Although infrequently encountered, alexia provides valuable insights into the neural architecture of reading and language processing. It highlights the intricate connectivity between visual and linguistic cortical regions and offers an essential model for studying language lateralization, visual cognition, and neuroplasticity. Research on alexia continues to inform the development of targeted neurorehabilitation strategies for acquired reading impairments following brain injury [9].

### Aim and Objective

#### Aim:

To critically review and integrate current scientific knowledge on alexia-an acquired reading disorder-by examining its neuroanatomical basis, clinical features, diagnostic approaches, and therapeutic interventions, with the ultimate goal of deepening understanding of its pathophysiology and informing evidence-based rehabilitation strategies.

### **Objectives**

- To provide a comprehensive definition and classification of alexia according to its principal subtypes-pure alexia, alexia with agraphia, frontal alexia, and posterior alexia-detailing their respective neuropsychological profiles and underlying neuroanatomical correlates.
- To delineate the neuroanatomical and pathophysiological mechanisms that contribute to alexia, emphasizing the functional roles of the occipital cortex, corpus callosum, angular gyrus, and visual word form area, as well as associated whitematter disconnection pathways.
- To examine the clinical presentation and diagnostic framework of alexia by integrating insights from neurological, neuropsychological, and neuroimaging techniques, including MRI, fMRI, and diffusion tensor imaging (DTI).
- 4. To evaluate conventional and emerging therapeutic interventions for alexia, encompassing speech-language therapy, computer-assisted rehabilitation programs, and neuromodulation techniques such as transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS).
- To analyze current research developments and methodological innovations in fields such as connectomics, cognitive neuropsychology, and machine learning that are advancing the understanding and management of alexia.
- 6. To identify persisting challenges and future directions in the diagnosis, treatment, and rehabilitation of alexia, focusing on areas such as underdiagnosis, lack of standardized assessment tools, and the need for individualized, patientcentered therapeutic strategies.

# 2.Neuroanatomical and pathophysiological foundations

# 2.1 Brain Regions Critical for Reading and Visual Word Recognition:

Reading is implemented by a distributed, largely left-lateralized network that transforms visual patterns (letters/words) into phonological and semantic representations. Major nodes and their contributions:

Primary visual cortex (V1; occipital pole), encodes low-level visual features (edges, orientation, contrast) and initial retinotopic mapping of letter-string input.

Extra striate visual areas (V2–V4), progressively integrate features into complex shapes and letter components; support early letter/shape discrimination [1].

Left ventral occipitotemporal cortex, Visual Word Form Area (VWFA) (mid-fusiform/occipitotemporal sulcus); specialized for rapid, case-/font-invariant recognition of letter strings and familiar word forms; acts as a gateway from visual form to language circuits [2,4].

Left temporoparietal region (angular gyrus, supramarginal gyrus, posterior superior temporal gyrus) — mediates grapheme-to-phoneme conversion, phonological assembly, and lexical-semantic integration; essential for phonological decoding and mapping orthography to meaning/sound [5,6].

Left inferior frontal gyrus (IFG; Broca area and adjacent pars opercularis/triangularis) — supports articulatory planning, phonological working memory, and semantic/controlled retrieval during reading, particularly when effortful decoding is required [6,7].

White matter tracts — inferior longitudinal fasciculus (ILF), inferior fronto-occipital fasciculus (IFOF), arcuate fasciculus and splenium of the corpus callosum provide the structural connections that permit efficient information flow between visual cortex, VWFA, temporoparietal language zones and frontal articulatory systems [8,9].

Reading performance depends on rapid, coordinated activity across these cortical nodes and intact white-matter connections; disruption at different loci produces dissociable clinical alexic profiles.

# 2.2 Neuroanatomical Lesion Localization in Alexia (Occipital Cortex, Corpus Callosum, Angular Gyrus):

Clinical subtypes of alexia largely reflect lesion site and whether language production/writing is preserved.

Left occipital cortex (including ventral occipital areas)

Lesions here produce contralateral visual field deficits (e.g., right homonymous hemianopia) and can impair initial visual input to the reading network. If restricted to left occipital cortex but sparing interhemispheric transfer, reading may be slow but possible. Involvement of the left ventral occipitotemporal region (VWFA) causes marked impairment of whole-word recognition and typical "letterby-letter" reading (pure/perserved agraphia in some cases) [10].

Splenium of the corpus callosum (posterior callosal fibers) The splenium conveys visual information from the right occipital cortex (which receives left visual field input) to left hemisphere language regions. Combined lesions of left occipital cortex and splenium (or isolated splenial lesions with left occipital damage) classically produce alexia without agraphia (pure alexia): patients can write spontaneously but cannot read what they have written because visual input cannot reach left language centers [11,13].

Angular gyrus (left inferior parietal lobule)

Lesions of the left angular gyrus typically produce alexia with agraphia, because this region participates in integrating orthographic, phonological and semantic information and in the transformation between written and spoken representations. Angular-gyrus damage often occurs with other features (Gerstmann's constellation: finger agnosia, left-right disorientation, acalculia) depending on lesion extent [5,14].

VWFA / left fusiform gyrus

Focal damage to the VWFA (left mid-fusiform) produces impaired rapid recognition of familiar words and well-formed letter sequences; patients often adopt slow, serial letter-by-letter reading, with relatively preserved spoken language and writing (though writing can be affected if adjacent cortex or connections are involved) [2,3].

Summary: patterns of deficits (visual field cut, preserved writing, letter-by-letter reading, presence of Gerstmann signs) allow inference about lesion location involving occipital cortex, corpus callosum, angular gyrus or VWFA.

# 2.3 The Disconnection Syndrome Hypothesis Explaining Symptomatology:

The disconnection hypothesis (originally articulated by Geschwind and refined by later authors) explains many alexia presentations by interruption of information transfer rather than destruction of representational stores.

#### **Key ideas**

Visual perception of word forms occurs in occipital/extra striate cortex in both hemispheres. In typical left-dominant reading, visual inputs (including from the right occipital cortex) must reach left hemisphere language centres (VWFA  $\rightarrow$  angular gyrus  $\rightarrow$  Wernicke/IFG).

A lesion that removes left occipital input (e.g., left occipital infarct) and simultaneously interrupts posterior interhemispheric transfer through the splenium prevents right-hemisphere visual cortical output from accessing left language areas. The left language system itself (and writing motor programs) may remain intact — hence patients can write but cannot read visual material: alexia without agraphia [11,13].

Disconnection can also be expressed as white-matter tract injury (e.g., ILF, IFOF, arcuate), where nodes are intact but the pathways linking visual form and language networks are disrupted, producing reading deficits even when focal cortex appears preserved on gross imaging [8,9].

This hypothesis has been corroborated by lesion mapping, intraoperative stimulation and diffusion imaging demonstrating that many alexic deficits map better to interrupted pathways than to loss of a single cortical area.

### Disconnect Syndrome

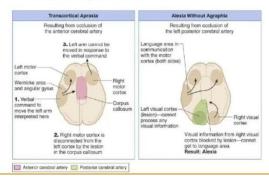



Figure 2: Image of Disconnect Syndrome.

# 2.4 Neural Pathways Implicated, Including the Visual Word Form Area (VWFA)

Reading engages multiple anatomical pathways arranged functionally:

Ventral occipitotemporal (ventral) stream: The "what" route

VWFA (left mid-fusiform/occipitotemporal sulcus) is the central node. It performs rapid orthographic pattern recognition and accesses lexical/semantic representations via temporoparietal connections. Lesions or functional disruption in VWFA reduce word-selective responses and cause slow, serial reading [2,4].

The inferior longitudinal fasciculus (ILF) and inferior fronto-occipital fasciculus (IFOF) link occipital/VWFA to temporal and frontal language regions, supporting access to semantics and higher-order processing [8,9].

Dorsal temporoparietal pathway; The "how"/phonological route

Involves posterior superior temporal gyrus, supramarginal and angular gyri and the arcuate fasciculus. This pathway is important for grapheme→phoneme conversion, phonological assembly and analytic decoding — especially engaged when reading unfamiliar words or during early literacy [5,6].

### Frontal articulatory/attention systems

Inferior frontal gyrus and supplementary motor areas support phonological working memory, subvocal rehearsal, and strategic retrieval. Frontal systems also contribute to controlled attention needed for effortful decoding [6, 7].

### **Interhemispheric transfer (splenium)**

The splenium of the corpus callosum carries visual information between hemispheres; it is crucial when left occipital input is compromised and the right hemisphere must supply visual input to the language-dominant left hemisphere [11,13].

### **Functional specialization:**

VWFA is functionally tuned by literacy experience — it shows preferential activation for orthographic stimuli, becoming invariant to font, size and case for familiar

scripts. However, VWFA is not an isolated "letter box" — it is embedded in a broader reading network and depends on intact inputs and outputs via white matter tracts [2,4,8].

# 2.5 Insights from Functional Neuroimaging: Activation Patterns and Neuroplasticity:

Functional imaging (fMRI, PET), lesion-symptom mapping, intracranial stimulation, and diffusion MRI have clarified mechanisms of normal reading, alexia and recovery.

### Normal activation patterns

Typical fluent reading produces a reliable left-lateralized pattern: strong activation in VWFA, left temporoparietal cortex (phonological/semantic processing), and left IFG (articulatory/selection processes). Bilateral occipital activation reflects low-level visual processing [2,5,6].

### Lesion correlates and functional disruption

fMRI and intracranial stimulation studies show that disruption of VWFA abolishes word-selective responses and impairs whole-word recognition; however, selective sparing of other visual functions is possible, supporting modular—but network-embedded—VWFA function [3,4]. DTI/tractography studies reveal that damage to ILF/IFOF or posterior callosal fibers correlates with alexia severity, supporting the disconnection model [8,9]. Lesion-symptom mapping across cohorts often shows better prediction of reading impairment when white matter involvement is accounted for.

### Compensatory activity and neuroplasticity Recovery after stroke or focal resection often involves:

Perilesional recruitment and gradual re-establishment of left hemisphere function when tissue allows.

**Right hemisphere compensation:** increased activation in right homologues of VWFA and temporoparietal regions; this is more prominent when left hemisphere damage is extensive and can support partial functional recovery, albeit sometimes with slower, less efficient processing [10,12].

**Strengthening alternate pathways:** reorganization of remaining white-matter tracts and functional strengthening of indirect routes between visual cortex and language centers [9,12].

Longitudinal fMRI studies of training-based rehabilitation (intensive reading therapy) show measurable increases in activation in either ipsilesional or contralesional regions and sometimes restoration of VWFA responsiveness, correlating with behavioral gains [10,12,15].

### Clinical and research implications

Neuroimaging aids differential diagnosis (e.g., distinguishing pure alexia from visual agnosia or central alexia), guides prognosis (extent of tract damage correlates with recovery potential), and informs targeted rehabilitation (techniques that exploit neuroplasticity,

such as cross-modal training or repeated practice to strengthen alternative pathways) [9,10,15].

### 3. Classification and Clinical Subtypes of Alexia

Alexia represents a heterogeneous group of acquired reading disorders, each linked to distinct lesion sites and cognitive mechanisms. Subtypes are generally classified based on the associated linguistic profile, neuroanatomical lesion localization, and underlying cognitive impairment.

### 3.1 Pure Alexia

#### **Definition:**

Pure alexia (also termed alexia without agraphia or posterior alexia) is an acquired disorder characterized by an isolated impairment of visual word recognition with preserved oral language, comprehension, and writing ability (1–3). Patients typically exhibit a "letter-by-letter" reading pattern, reading each letter serially before assembling them into words. Reading time increases proportionally with word length, a defining feature known as the word-length effect (4). A right homonymous hemianopia is frequently observed due to left occipital involvement.

Disconnection Syndromes: Alexia Without Agraphia

Left Right Right

Language center Epistium of motor catesium

Lesion (occlusion of the left posterior cerebral artery) damages the left computed and the compute

Figure 3: Image of Alexa.

### **Neuropsychological Profile**

- Profound impairment in whole-word recognition.
- · Preserved single-letter naming and oral spelling.
- Intact auditory comprehension and naming (5).
- Reading via tactile or auditory input sometimes preserved.

### **Lesion Correlates and Mechanism**

Pure alexia most commonly follows infarction of the left posterior cerebral artery (PCA) territory, involving the left occipital cortex, ventral occipitotemporal region (including the visual word form area [VWFA]), and/or the splenium of the corpus callosum (6–8).

The disconnection hypothesis explains that visual input from the intact right occipital cortex cannot reach left hemisphere language regions due to splenial damage, leading to a visual–verbal disconnection (9).

#### **Prognosis and Rehabilitation:**

Recovery is variable. Letter-by-letter retraining, context-based reading, and multimodal sensory integration (e.g., combining auditory and visual stimuli) can improve fluency (10). fMRI studies have shown compensatory

recruitment of right occipitotemporal regions and perilesional activation in recovery (11,12).

### 3.2 Alexia with Agraphia:

### **Definition:**

Alexia with agraphia refers to a dual impairment in reading and writing, often sparing oral language comprehension and spontaneous speech (13). It is frequently associated with Gerstmann's syndrome—a tetrad of agraphia, acalculia, finger agnosia, and left-right disorientation (14).




Figure 4: Image of Alexia with Agraphia.

### **Lesion Correlates**

The syndrome results from damage to the left angular gyrus and adjacent posterior superior temporal and inferior parietal lobules (15,16). This region acts as a multimodal hub linking visual, auditory, and somatosensory information essential for reading and writing.

### **Cognitive Mechanism**

Unlike pure alexia, which involves a visual-verbal disconnection, alexia with agraphia reflects core orthographic system impairment (17). The lesion disrupts access to stored orthographic representations, impairing both input (reading) and output (writing) processes. Deficits may also reflect a graphemic buffer impairment, affecting temporary storage of letter sequences (18).

### **Clinical Presentation**

- Impaired reading and writing with preserved speech.
- Errors in spelling (paragraphias) and letter substitutions.
- Co-occurrence of other angular gyrus symptoms (e.g., acalculia).

### 3.3 Frontal Alexia

#### **Definition:**

Frontal alexia (sometimes overlapping with deep alexia) arises from lesions in the left inferior frontal gyrus (Broca's area) or perisylvian language regions (19). Patients exhibit relatively preserved reading of high-frequency or familiar words but severe difficulty with unfamiliar words and nonwords.

### **Clinical Features**

- Semantic paralexias (e.g., reading "cat" as "dog") (20).
- Difficulty in grapheme-to-phoneme conversion.
- Reduced phonological working memory and slow, effortful reading.

#### **Lesion Correlates and Mechanism**

Large lesions involving the left inferior frontal gyrus, insula, and basal ganglia produce deficits in controlled retrieval, sequencing, and phonological assembly (21,22). The mechanism is thought to involve disrupted phonological decoding and semantic-phonological mapping, impairing the phonological route for reading aloud [23].

#### 3.4 Posterior Alexia:

#### **Definition:**

Posterior alexia encompasses reading impairments due to lesions of posterior cortical regions (occipital, occipitotemporal, posterior inferior temporal, or occipitoparietal areas) [24]. The syndrome often overlaps with pure alexia but may also appear in progressive neurodegenerative diseases such as posterior cortical atrophy (PCA).

#### **Clinical Features:**

- Letter-by-letter reading (VWFA lesion).
- Visual field deficits (occipital lesions).
- Neglect dyslexia when parietal regions are affected [25].
- In PCA: visual agnosia, simultanagnosia, and visuospatial dysfunction [26].

### **Lesion Correlates:**

- VWFA/fusiform gyrus → impaired whole-word recognition.
- Occipital pole → right visual field loss.
- Splenium → disconnection-type alexia.
- Parietal cortex → visuospatial neglect and omission errors [27,28].

### 3.5 Developmental vs. Acquired Alexia:

### **Definitions:**

**Developmental alexia (developmental dyslexia):** A neurodevelopmental disorder with difficulty in reading acquisition despite normal intelligence and education [29]. Acquired alexia: A sudden onset reading impairment following previously normal literacy, caused by stroke, trauma, or degenerative disease [30].

### **Neuroanatomical and Functional Differences:**

Developmental alexia: Atypical left temporoparietal and occipitotemporal activation; compensatory recruitment of right hemisphere homologues; disrupted arcuate fasciculus microstructure [31,32].

Acquired alexia: Lesion-based disruption of established reading networks, revealing functional specialization of the VWFA and angular gyrus [33].

### **Intervention Approaches:**

**Developmental:** Early phonics-based training, multisensory learning, and orthographic awareness [34]. **Acquired:** Mechanism-targeted rehabilitation (e.g., letterby-letter retraining, semantic cueing, cross-modal inputs) [35].

### 4. Etiological Factors and Risk Contributors

# **4.1 Vascular Etiologies: Stroke and Ischemic Lesions in Left Occipital Region:**

The most frequent cause of alexia is ischemic stroke involving the left occipital lobe, the splenium of the corpus callosum, or the Visual Word Form Area (VWFA) in the left occipitotemporal cortex. Lesions in these regions produce a disconnection syndrome, wherein visual information from the right visual field processed by the intact right occipital cortex cannot reach the language centres in the left hemisphere, resulting in an inability to read despite preserved writing and spoken language, a hallmark of pure alexia. Infarcts in the posterior cerebral artery commonly underlie such lesions, supported by neuroimaging studies and case reports documenting sudden-onset alexia with otherwise preserved language functions.

### 4.2 Traumatic Brain Injury-Induced Alexia: Mechanisms and Cases:

Traumatic brain injury (TBI) can also precipitate alexia, typically through focal contusions or diffuse axonal injury that disrupt neural networks critical for reading. Clinical case studies have reported acquired alexia and agraphia following severe TBI, demonstrating deficits in sight word recognition and oral reading speed. Intensive rehabilitation, combining sight word drills and structured oral reading exercises, has been shown to improve reading performance post-TBI, although some residual impairment may persist [36].

# 4.3 Neurodegenerative Causes: Alzheimer's disease and Posterior Cortical Atrophy:

Neurodegenerative disorders, including Alzheimer's disease (AD) and posterior cortical atrophy (PCA), can present with alexia due to progressive degeneration of visual and language-processing brain regions. PCA, an atypical variant of AD, preferentially affects occipital and parietal cortices, resulting in visuospatial deficits and alexia that may precede other cognitive impairments, highlighting the importance of early recognition for targeted intervention.

# 4.4 Infectious, Neoplastic, and Demyelinating Conditions as Causative Factors:

Although less common, alexia may also result from infectious encephalitis, neoplastic lesions (brain tumors), and demyelinating diseases such as multiple sclerosis, which compromise white matter tracts or cortical areas involved in reading.

### **4.5** Genetic Predispositions and Environmental Influences:

While direct genetic causation of alexia is not wellestablished, genetic factors affecting brain development or susceptibility to cerebrovascular and neurodegenerative indirectly increase diseases may alexia Environmental and lifestyle factors-including hypertension, diabetes, smoking, and other vascular risk factors-also contribute to cerebrovascular events or neurodegenerative processes that can precipitate alexia [37].

# 5. Clinical Manifestations and Symptomatic Spectrum

### 5.1 Deficits in Word Recognition and Reading Fluency:

Acquired alexia is primarily characterized by a disruption in visual word recognition and reading fluency. The hallmark of pure alexia (alexia without agraphia) is letter-by-letter reading, in which patients identify letters serially before assembling them into words, leading to markedly slow reading with a pronounced word-length effect-the longer the word, the slower and less accurate the reading performance. Reading of unfamiliar words and nonwords is often more severely affected, reflecting impairment in phonological decoding pathways. Visual crowding and reduced parallel letter processing have also been implicated in these reading deficits.

# **5.2 Relative Preservation of Writing Ability and Spoken Language**

In pure alexia, a striking clinical dissociation is observed: patients lose the ability to read, yet retain spontaneous writing, fluent speech, and intact auditory comprehension (4). This pattern supports the hypothesis of a disconnection syndrome, where visual input from the occipital cortex cannot reach the intact language areas in the left hemisphere. The lesion typically involves the left occipital cortex and splenium of the corpus callosum. In contrast, when lesions extend into parietal or perisylvian regions, alexia may coexist with agraphia or aphasia, producing mixed clinical profiles.

# 5.3 Associated Neurological Symptoms: Hemianopia, Aphasia, and Cognitive Deficits:

Alexia is frequently accompanied by additional neurological symptoms depending on lesion topography and extent. Lesions in the posterior cerebral artery (PCA) territory affecting the dominant (left) occipital cortex commonly produce right homonymous hemianopia, further hindering reading performance. When the lesion extends anteriorly into the angular gyrus or perisylvian regions, aphasia (especially anomia and impaired naming) may develop. Broader cortical involvement may also result in visuospatial, attentional, or memory deficits, particularly in cases of posterior cortical atrophy, where progressive degeneration of occipitotemporal areas compromises reading, object recognition, and visuoperceptual processing.

# **5.4 Adaptive Behavioural Stratergies and cognitive coping Mechanisms**

Patients with alexia frequently adopt adaptive reading strategies and benefit from targeted rehabilitation programs. Common compensatory approaches include:

- 1. Letter-by-letter rehearsal and increased letter spacing to reduce visual crowding.
- Audiovisual or tactile-kinaesthetic reinforcement, such as reading aloud or tracing letters to engage multisensory integration.
- 3. Use of contextual cues and predictive processing to support lexical access.

4. Assistive technology, including text-to-speech applications and high-contrast print materials.

Rehabilitation methods like Multiple Oral Re-reading (MOR) and Audio-Visual Reading Training have shown significant improvements in reading fluency and accuracy by enhancing top-down activation and strengthening connectivity between visual and language networks. Despite these advances, interindividual variability remains high, and outcomes depend on lesion site, severity, and neuroplastic potential.

### 5.5 Illustrative Case Reports and Clinical Vignettes:

Clinical case reports highlight the heterogeneity of alexia presentations and recovery outcomes. Classic examples involve pure alexia following left PCA infarction, typically with accompanying right hemianopia. Partial functional recovery has been documented following structured therapy emphasizing repetitive reading and visual-verbal pairing. Rare cases involving isolated splenial lesions support the theory that interhemispheric disconnection is central to alexia without agraphia. In contrast, younger stroke patients and those with traumatic etiologies demonstrate greater neuroplasticity and better prognosis.



Figure 5: Image of Illustrative Case Reports and Clinical Vignettes.

### 6. Diagnostic Procedures and Evaluation

### **6.1 Comprehensive Clinical and Neurological** Examination:

A detailed clinical and neurological examination is the essential first step in evaluating acquired reading disorders. The assessment should include evaluation of consciousness and attention, visual function (acuity, fields, and ocular motility), higher-order visual processing (object and face recognition), language abilities (spontaneous speech, comprehension, repetition, naming), and praxis, motor, and sensory functions [38].

### Clinical features to record include:

 Onset and time course: sudden (ischemic or traumatic) versus gradual (neurodegenerative).

### Pattern of reading difficulty:

- Letter-by-letter reading with a marked word-length effect → pure alexia (visual-form impairment).
- Surface or phonological errors → lexical or sublexical route dysfunction.
- Associated deficits: agraphia, aphasia, hemi-neglect, or visual agnosia.

Practical bedside tests include rapid assessment of singleword and nonword reading, naming, writing to dictation, and copying tasks. Visual field confrontation and object recognition tests are crucial to rule out visual or attentional causes. Brief cognitive screening for attention, orientation, and memory ensures that deficits are not secondary to global cognitive dysfunction.

### **6.2 Neuropsychological Assessments:**

Comprehensive neuropsychological testing quantifies the reading deficit, identifies preserved cognitive domains, and informs both localization and rehabilitation planning.

### Core domains and representative tests:

**Single-word reading:** examines frequency, regularity, and length effects.

**Nonword reading:** assesses phonological decoding capacity.

**Irregular word reading:** evaluates the integrity of the lexical route.

**Naming tasks:** tools such as the Boston Naming Test help differentiate alexia from aphasia.

**Writing assessments:** dictation and spontaneous writing differentiate alexia with versus without agraphia.

**Visuoperceptual testing:** object and face recognition tasks exclude generalized visual agnosia.

**Comprehensive language batteries:** e.g., the Boston Diagnostic Aphasia Examination (BDAE) or Western Aphasia Battery (WAB), to evaluate coexisting aphasic syndromes.

#### **Specialized assessments:**

Reaction time and eye-tracking studies can reveal compensatory reading strategies.

### Interpretation:

The integration of test results supports subtype classification (pure, surface, phonological, or deep alexia) and aids in lesion localization and therapeutic planning.

### 6.3 Structural and Functional Neuroimaging:

Neuroimaging is indispensable for identifying lesion sites and characterizing structural–functional network disruptions.

### Functional MRI (fMRI) complements structural imaging:

Resting-state fMRI evaluates altered network connectivity across visual and language systems.

#### **Clinical applications:**

Acute stroke: CT followed by MRI/DWI; DTI assesses tract integrity.

**Progressive alexia:** MRI combined with FDG-PET reveals cortical atrophy and hypometabolism patterns indicative of neurodegenerative variants.

### ${\bf 6.4}\ Electrophysiological\ and\ Functional\ Studies:}$

Electroencephalography (EEG) assists in detecting octal or subictal language dysfunction that can present as transient alexia. EEG also helps differentiate epileptic from structural causes and may identify aphasic seizures when imaging is inconclusive. Advanced network analyses of EEG data are currently investigational but promising in classifying degenerative language syndromes.

Positron emission tomography (PET) provides metabolic information beyond structural imaging:

FDG-PET identifies hypo metabolism in left occipitaltemporal regions and differentiates degenerative from vascular or epileptic etiologies.

Amyloid and tau PET tracers can reveal underlying pathology in progressive alexic or aphasic syndromes.

#### Clinical yield:

EEG is indispensable for suspected seizure-related alexia, while PET provides metabolic and diagnostic clarity in neurodegenerative or ambiguous cases.

### 6.5 Diagnostic Framework and Differential Diagnosis:

A structured framework integrates clinical history, neurological examination, neuropsychological assessment, and multimodal imaging findings.

#### Stepwise diagnostic approach:

- Confirm acquired reading impairment in a previously literate individual.
- 2. Exclude ocular or peripheral visual causes through ophthalmological and visual field testing.
- 3. Administer standardized neuropsychological tests to determine alexia subtype.
- 4. Perform MRI (±DWI/DTI) to localize lesions; add PET or EEG as clinically indicated<sup>4–7</sup>.
- 5. Synthesize multimodal findings for a definitive diagnosis and rehabilitation plan.

### Key differential diagnoses:

- Ocular or optic pathway diseases (e.g., macular degeneration, optic neuropathy).
- Visual agnosia or prosopagnosia (generalized object or face recognition impairment).
- Aphasia-related reading deficits (accompanying expressive and receptive language impairments)<sup>1</sup>.
- Neglect dyslexia (right-hemisphere lesions causing spatial reading omissions).
- Developmental dyslexia (lifelong reading difficulty distinct from acquired forms).

#### **Prognosis:**

Outcome depends on etiology. Post-stroke alexia often shows partial recovery with early intervention, whereas degenerative forms demonstrate progressive decline. Regular neuropsychological follow-up is recommended for monitoring and therapeutic adjustment [39].

### 7. Cognitive and linguistic frameworks

# 7.1 Theories of Visual Word Processing and Recognition Models:

Multiple-component frameworks emphasize dynamic interactions between visual processing, orthographic representations, and phonological coding to explain how words are recognized in both normal and impaired reading conditions, such as alexia [1, 3, 40].

### 7.2 Cognitive Models Explaining the Mechanisms of Alexia:

Alexia, an acquired reading disorder, results from disrupted pathways within visual word processing networks.

These models integrate evidence from neuroimaging and lesion studies, illustrating how neurological damage and network disconnectivity impair reading fluency, word recognition, and comprehension.

### 7.3 Hemispheric Lateralization and Language Dominance Effects on Reading:

Language dominance, primarily localized in the left hemisphere, strongly influences reading processes. Lesions in the left hemisphere, particularly in regions associated with language and visual word form processing, frequently result in alexia. Hemispheric lateralization also modifies the presentation and severity of alexia by affecting how visual and linguistic information is integrated.

For instance, left hemisphere dominance correlates with impairments in both phonological and lexical reading routes, whereas right hemisphere involvement may produce less common alexia profiles. Understanding hemispheric dominance is therefore essential for interpreting individual differences in alexia syndromes.

# 7.4 Cross-Linguistic and Orthographic Influences on Alexia Presentation:

The manifestation of alexia varies across languages depending on orthographic depth and linguistic characteristics.

Cultural and linguistic factors significantly shape the clinical presentation and recovery potential in alexia, highlighting the need for personalized, language-sensitive assessment and intervention strategies.

# 8. Rehabilitation Strategies and Therapeutic Approaches

# 8.1 Conventional Speech and Language Therapy Techniques:

Conventional therapy for alexia typically employs Multiple Oral Re-Reading (MOR) to enhance reading fluency through repeated exposure and practice. Lexical and sublexical training methods aim to strengthen whole-word recognition and phoneme–grapheme correspondence. Common therapeutic techniques include semantic feature analysis, lexical decision tasks, oral reading, repetition, word–picture matching, and anagram spelling.

Sentence-level interventions, such as Oral Reading for Language in Aphasia (ORLA) and mapping therapy, target syntax, working memory, and grammatical processing. These structured approaches progressively improve decoding, word recognition, and reading comprehension through individualized and adaptive feedback.

Rehabilitation of people with Pure Alexia

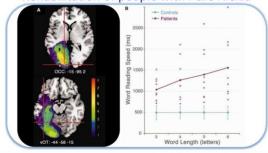



Figure 6: Image of Conventional Speech and Language Therapy Techniques.

# 8.2 Role of Computer-Assisted and Digital Rehabilitation Tools:

Emerging technologies, including virtual reality (VR) and mobile applications designed for language rehabilitation, enhance motivation and accessibility—particularly for remote or home-based therapy. Such tools facilitate personalized treatment intensity and diversity, which are essential for long-term improvements in reading and language recovery.

# 8.3 Compensatory Mechanisms: Visual Aids and Letter-by-Letter Reading Strategies:

Patients are trained to identify words sequentially by recognizing individual letters, gradually reconstructing words through serial processing. Additionally, tactile and kinesthetic methods—like tracing letters—promote multisensory engagement, aiding letter recognition and supporting reading accuracy by reducing cognitive load during decoding.

# 8.4 Pharmacological Treatments: Existing Evidence and Potential Agents:

While these pharmacotherapies show potential for aiding broader aphasia or cognitive recovery, there is insufficient evidence supporting their direct efficacy for alexia. Consequently, pharmacological agents are primarily used adjunctively alongside behavioral and speech–language therapies to optimize neural recovery outcomes.

# **8.5 Emerging Neuromodulation Therapies:** Transcranial Magnetic Stimulation (TMS) and Transcranial Direct Current Stimulation (tDCS)

Neuromodulation techniques, including Transcranial Magnetic Stimulation (TMS) and Transcranial Direct Current Stimulation (tDCS), are gaining prominence as adjunctive treatments in alexia rehabilitation.

Clinical studies indicate that tDCS combined with reading-based therapies (such as MOR) can improve reading speed and accuracy in pure alexia. Similarly, TMS has shown potential in reactivating disrupted neural pathways involved in visual-verbal integration. Ongoing research continues to refine stimulation protocols to ensure safety, consistency, and therapeutic efficacy.

# 9. Advances in experimental research and innovative therapies

### 9.1 Connectomics and Neuroimaging Advances in Alexia Research:

Recent advances in neuroimaging techniques, including functional magnetic resonance imaging (fMRI), diffusion tensor imaging (DTI), and connectomics, have enabled precise mapping of brain networks involved in reading.

Connectomic analyses demonstrate how lesions or white matter disconnections interrupt the transfer of orthographic and phonological information across cortical and subcortical networks. This approach aids in differentiating alexia subtypes and predicting the extent of reading impairments by identifying specific network disruptions.

# 9.2 Machine Learning and Artificial Intelligence Applications in Diagnosis and Prognosis:

Machine learning (ML) and artificial intelligence (AI) methods are increasingly being integrated into alexia diagnosis and prognosis.

Furthermore, AI-driven models can predict therapeutic outcomes, optimize individualized rehabilitation strategies, and accelerate clinical decision-making in alexia management.

# 9.3 Cutting-Edge Neurorehabilitation Technologies and Brain-Computer Interfaces:

Virtual reality environments offer immersive, interactive reading exercises that enhance patient engagement, while BCIs provide real-time monitoring and neurofeedback to promote cortical reorganization and functional recovery. These technologies exemplify the convergence of neuroscience and digital innovation in restoring reading functions

# 9.4 The Role of Neuroplasticity and Neural Repair Mechanisms in Recovery:

Magnetoencephalography (MEG) studies reveal increased connectivity between occipital and frontal regions after targeted therapy, indicating adaptive neural rewiring. Additional neural repair processes, such as remyelination and synaptic plasticity, further contribute to recovery, although complete restoration of premorbid reading ability remains rare.

### 9.5 Overview of Ongoing Clinical Trials and Future Research Directions:

Future research focuses on refining AI-driven diagnostic tools, enhancing precision in language network mapping via advanced neuroimaging, and developing personalized neurorehabilitation protocols. Expanding cross-linguistic studies and long-term follow-ups will improve understanding of recovery mechanisms across diverse populations. Ethical considerations related to data privacy in digital and AI-based assessments are also emerging as critical aspects of future research.

# 10. Clinical Case Studies and Comparative Analyses in Alexia

### 10.1 Seminal Case Reports Documenting Alexia Variants:

Subsequent case studies have reported similar syndromes resulting from vascular insults, tumors, traumatic injuries, and infectious lesions. More recent literature has extended the spectrum to include pediatric cases, such as alexia without agraphia following occipital lobe infarction or demyelinating events, broadening the understanding of alexia beyond adult populations [1,2].

# 10.2 Comparative Analysis of Pure Alexia and Alexia with Agraphia Presentations

Pure alexia is characterized by a selective impairment in reading with preserved writing, naming, and oral language, typically resulting from lesions in the left occipital cortex and posterior corpus callosum. Patients frequently rely on letter-by-letter reading strategies and may exhibit right homonymous hemianopia.

In contrast, alexia with agraphia (also termed central alexia) involves deficits in both reading and writing, often co-occurring with aphasia and acalculia due to lesions in the angular gyrus of the dominant parietal lobe. This form is frequently associated with Gerstmann syndrome, encompassing finger agnosia and right–left disorientation. The comparative analysis underscores distinct anatomical and functional substrates underlying each alexia variant [1,3,4].

# **10.3 Pediatric Versus Adult-Onset Alexia: Clinical and Prognostic Differences:**

Alexia is rare in children but can occur secondary to vascular, traumatic, or demyelinating etiologies. Pediatric cases differ from adult-onset alexia due to greater neuroplasticity and ongoing language network development, often leading to more favorable recovery trajectories.

Despite shared neuroanatomical correlates, pediatric patients often recover reading skills faster, reflecting the adaptive flexibility of the developing brain [2,5].

### 10.4 Rehabilitation Outcomes and Predictors of Recovery:

Recovery outcomes in alexia are highly variable and influenced by multiple factors, including lesion location, size, alexia subtype, age, and timing of intervention.

Key prognostic indicators for better outcomes include preserved semantic knowledge, absence of severe visual field deficits, and early, intensive rehabilitation. The integration of neuromodulation techniques (e.g., tDCS and TMS) with behavioral therapy has further enhanced recovery potential, though individual variability remains substantial. Long-term success depends on neural reorganization capacity and continued cognitive stimulation.

### 11. Chalenges, limitations, and knowledge gaps 11.1 Issues of Underdiagnosis and Misclassification in Clinical Practice

Alexia often remains underdiagnosed or misclassified due to heterogeneity in symptoms and overlap with other language and visual disorders. Misclassification can delay appropriate interventions and underreport prevalence. This gap reflects the complexity of alexia assessment, which requires synthesis of multifaceted cognitive and neural evidence beyond standard reading tests.

# 11.2 Access Barriers to Specialized Neurorehabilitation Services:

Barriers in access to specialized rehabilitation arise from geographic, economic, and systemic factors. Many patients with alexia lack local access to expert speech-language pathologists trained in neurogenic reading disorders. Limited healthcare resources, insurance coverage constraints, and lack of awareness impede timely diagnosis and therapy. Telehealth and digital tools offer potential solutions but are not yet universally implemented or accessible, particularly in underserved populations.

### 11.3 Need for Standardized Diagnostic and Assessment Protocols:

There is a critical need for standardized, comprehensive diagnostic protocols that incorporate detailed cognitive, linguistic, and neuroimaging assessments. Existing tools mainly focus on basic reading tasks, often neglecting associated visual, attentional, and numerical deficits relevant in alexia. Consensus guidelines with validated batteries for differential diagnosis across alexia subtypes would enhance clinical consistency and enable evidence-based interventions. Such protocols would also facilitate large-scale research and improve comparability across studies.

# 11.4 Ethical, Social, and Psychological Implications in Alexia Management:

Alexia impacts communication, autonomy, and quality of life, raising significant ethical and social considerations. Psychological distress, social isolation, and stigma are frequent among patients due to reading impairments. Ethical management requires informed consent about diagnosis and treatment options, patient-centered care respecting autonomy, and support addressing emotional well-being. Social inclusion initiatives and counseling are critical to mitigate adverse psychosocial effects and promote rehabilitation success [1-6, 11, 15, 21, 39, 41].



Figure 7: Image of Ethical, Social, and Psychological Implications in Alexia Management.

#### **Conclusion**

Alexia is an acquired reading disorder caused by focal brain lesions disrupting the neural networks critical for visual word recognition and language processing, primarily in the left hemisphere regions including the occipital cortex, corpus callosum, angular gyrus, and the Visual Word Form Area (VWFA). It manifests in clinical subtypes such as pure alexia, alexia with agraphia, frontal, and posterior alexia, each reflecting distinct lesion sites and cognitive mechanisms. The disconnection syndrome hypothesis explains alexia as impaired information transfer between visual and language areas rather than isolated cortical damage.

Diagnosis relies comprehensive clinical, on neuropsychological, and multimodal neuroimaging assessments, enabling precise characterization of lesion location and reading deficits. Rehabilitation involves targeted speech-language therapies enhanced by digital tools and neuromodulation, promoting neuroplasticity with variable recovery outcomes. Despite advances, challenges in standardized protocols, individualized approaches, and access remain. Future research should focus on personalized interventions, integration of neurotechnologies, and consideration of linguistic diversity to optimize rehabilitation and functional recovery. Alexia not only elucidates the neural basis of reading but also informs innovative approaches for acquired language disorder management.

### Acknowledgement

Not Declared

### **Conflicts of Interest**

The authors declare no conflicts of interest.

### **Author Contribution**

Both contribute equally

### **Financial Support**

None

### **Ethical Considerations and Informed Consent**

Not Applicable

### References

- Barbosa AC. Alexia. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Mar 3 [cited 2025 Oct 11]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK557669/
- 2. Alduais A. Neuropsychological diagnosis and assessment of alexia. Front Psychol. 2024;15:622.
- 3. Dejerine J. Anatomie des centres nerveux. Vol. 2. Paris: Rueff; 1892.
- 4. Geschwind N. The Herner's fasciculus and its role in conduction aphasia. Arch Neurol. 1965;12(1):4–7.
- 5. EyeWiki. Alexia without agraphia [Internet]. 2024 Nov 25 [cited 2025 Oct 11]. Available from: https://eyewiki.org/Alexia\_without\_Agraphia

- Cureus. Alexia without agraphia: a rare entity [Internet]. 2017 Jun 1 [cited 2025 Oct 11]. Available from: https://www.cureus.com/articles/7391-alexiawithout-agraphia-a-rare-entity
- MD Searchlight. Alexia [Internet]. 2024 Dec 18 [cited 2025 Oct 11]. Available from: https://mdsearchlight.com/neurology/alexia/
- 8. MedLink. Alexia [Internet]. 2025 May 28 [cited 2025 Oct 11]. Available from: https://www.medlink.com/articles/alexia
- Oxford Academic. Aphasia: a clinical perspective Alexia [Internet]. 2025 [cited 2025 Oct 11]. Available from: https://academic.oup.com/book/53543/chapter/42

2110464

- 10. Hubel DH, Wiesel TN. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J Physiol (Lond). 1962;160:106–154.
- 11. Dehaene S, Cohen L. The unique role of the visual word form area in reading. Trends Cogn Sci. 2011;15(6):254–262.
- 12. Cohen L, Dehaene S. Specialization within the ventral stream: the case for the visual word form area. Neuroimage. 2004;22(1):466–476.
- 13. Gaillard R, Naccache L, Pinel P, et al. Direct intracranial, fMRI, and lesion evidence for the causal role of the left mid-fusiform gyrus in reading. Neuron. 2006;50(2):191–204.
- 14. Price CJ. The anatomy of language: a review of 100 fMRI studies. Cereb Cortex. 2012;22(1):200–210.
- 15. Pugh KR, Mencl WE, Shaywitz BA, et al. The angular gyrus in reading: converging evidence from functional imaging studies. Ann N Y Acad Sci. 2000;930:222–232.
- 16. Bookheimer S. Functional MRI of language: new approaches to understanding the cortical organization of semantic processing. Annu Rev Neurosci. 2002;25:151–188.
- 17. Catani M, Mesulam M. The arcuate fasciculus and the disconnection theme in language and aphasia: history and current state. Brain. 2008;131(Pt 8):2123–2136.
- 18. Catani M, ffytche DH. The rises and falls of disconnection syndromes. Brain. 2005;128(10):2224–2239.
- 19. Leff AP, Schofield TM, Crinion JT, et al. The left-posterior temporal cortex and reading recovery after stroke. Ann Neurol. 2006;59(1):99–107.
- 20. Geschwind N. Disconnexion syndromes in animals and man. Brain. 1965;88(2):237–294.
- 21. Saur D, Lange R, Baumgaertner A, et al. Dynamics of language reorganization after stroke. Brain. 2006;129(6):1371–1384.
- 22. Damasio AR, Damasio H. The anatomic basis of pure alexia. Neurology. 1983;33(12):1573–1583.
- Benton AL. Disorders of visuoperceptive recognition and their relation to reading and writing. In: Mesulam MM, editor. Principles of Behavioral Neurology. Philadelphia: F.A. Davis; 1985. p. 129–150.
- 24. Turkeltaub PE, Gareau L, Flowers DL, et al. Development of neural mechanisms for reading. Nat Neurosci. 2003;6(7):767–773.

- 25. Dejerine J. Sur un cas de cécité verbale avec agraphie, suivi d'autopsie. Mém Soc Biol. 1892;4:61–90.
- 26. Leff AP, Starrfelt R. Alexia: the neuropsychology of reading disorders. Oxford: Oxford University Press; 2014.
- 27. Warrington EK, Shallice T. Word-form dyslexia. Brain. 1980;103(1):99–112.
- Coslett HB, Saffran EM. Mechanisms of reading impairment in alexia without agraphia. Brain. 1989;112(2):327–359.
- 29. Binder JR, Mohr JP. The topography of callosal reading pathways: a case-control analysis. Brain. 1992;115(6):1807–1826.
- 30. Behrmann M, Plaut DC. Distributed circuits, not circumscribed centers, mediate visual word recognition. Trends Cogn Sci. 2013;17(5):210–219.
- 31. Richardson FM, Price CJ. Structural MRI studies of language function. Brain Struct Funct. 2009;213(6):511–523.
- 32. Déjerine J. Contribution à l'étude anatomopathologique et clinique des différentes variétés de cécité verbale. Mém Soc Biol. 1892;4:61–90.
- 33. Gerstmann J. Syndrome of finger agnosia, disorientation for right and left, agraphia, and acalculia. Arch Neurol Psychiatry. 1940;44:398–408.
- 34. Roeltgen DP, Heilman KM. Alexia with agraphia. Arch Neurol. 1983;40(9):846–848.
- 35. Alexander MP, Friedman RB. Lesion localization in alexia. Neuropsychologia. 1984;22(6):747–758.
- 36. Rapp B, Lipka K. The literate brain: the relationship between spelling and reading. J Cogn Neurosci. 2011;23(5):1180–1197.
- 37. Caramazza A, Miceli G. The structure of graphemic representations. Cognition. 1990;37(3):243–297.
- 38. Coltheart M, Patterson K, Marshall JC. Deep Dyslexia. London: Routledge; 1980.
- 39. Friedman RB. Two types of phonological alexia. Cortex. 1996;32(3):375–387.
- 40. Nadeau SE, Crosson B. Subcortical aphasia. Brain Lang. 1997;58(3):355–402.
- 41. Binder JR, Mohr JP. The topography of posterior cortical reading pathways. Brain. 1992;115(6):1807–1826.