Role, Toxicity and Remediation of Nickel in Plants: A Review
Abstract
Heavy metals are a group of elements known for their high atomic weight and density, typically over 5 g/cm³. While some, like nickel [Ni], iron [Fe], and zinc [Zn], are essential for plant growth in small amounts, others such as cadmium [Cd], mercury [Hg], and lead [Pb] are purely toxic. Nickel is unique as it plays a dual role in plants. In tiny amounts, it's crucial for healthy development, helping enzymes function properly and aiding in nitrogen metabolism. But when plants absorb in excess, it becomes harmful. It disrupts essential processes like photosynthesis, damages enzymes, and weakens cell structure and stunts overall plant growth. Nickel pollution can be caused naturally, but human activities like industrial manufacturing, burning fossil fuels, and overuse of chemical fertilizers are also major contributors. Due to its harmful effects, especially at high levels, it is considered both as an environmental pollutant and a cancer-causing agent [Group I carcinogen]. Plants take up nickel through their roots and the rate of absorption depends on several factors, such as soil pH, the form of nickel present, and the plant species. Over time, nickel builds up, in the leaves, shoots, and even the tiny pores [stomata] on leaves leading to symptoms like yellowing [chlorosis], dead patches [necrosis], and an imbalance in nutrients. High nickel levels can also trigger oxidative stress by generating reactive oxygen species [ROS], which further harms the plant. Scientists have developed various clean-up methods to deal with Ni pollution, which include traditional approaches, like soil washing or chemical treatment, which can be expensive and disruptive to the environment. Therefore, biological strategies are gaining attention. One of the most promising involves, plant growth-promoting bacteria [PGPBs]. These beneficial microbes not only help plants grow better but also make them more tolerant to heavy metals. This can be achieved by producing helpful compounds like hormones and antioxidants, and by binding and breaking down nickel to reduce its toxicity.
References
2. Stohs SJ, Bagchi D. Oxidative mechanisms in the toxicity of metal ions. Free Radic Biol Med. 1995;18[2]:321–36.
3. Guidotti TL, McNamara J, Moses MS. The interpretation of trace elements analysis in body fluids. Indian J Med Res. 2008;128[5]:524–32.
4. Ragsdale SW. Nickel biochemistry. Curr Opin Chem Biol. 1998;2[2]:208–15.
5. Sreekanth TVM, Nagajyothi PC, Lee KD, Prasad TNVKV. Occurrence, physiological responses and toxicity of nickel in plants. Int J Environ Sci Technol. 2013;10[6]:1129–40.
6. Tammaro A, Narcisi A, Persechino S, Caperchi C, Gaspari A. Dermatitis. 2011;22[5]:251–5.
7. Buxton S, Garman E, Heim KE, Lyons-Darden T, Schlekat CE, Taylor MD, Oller AR. Nickel: Human health and environmental toxicology. Inorganics. 2019;7[7]:89.
8. Song X, Kenston SSF, Kong L, Zhao J. Molecular mechanisms of nickel-induced neurotoxicity and chemoprevention. Toxicology. 2017;392:47–54.
9. Ragsdale SW. Nickel-based enzyme systems. J Biol Chem. 2009;284[39]:18571–5.
10. Sawers RG, Kretsinger RH, Uversky VN, Permyakov EA. Nickel in Bacteria and Archaea. In: Kretsinger RH, Uversky VN, Permyakov EA, editors. Encyclopedia of Metalloproteins. New York [NY]: Springer; 2013.
11. Boer JL, Mulrooney SB, Hausinger RP. Nickel-dependent metalloenzymes. Arch Biochem Biophys. 2014;544:142–52.
12. Maroney MJ, Ciurli S. Nonredox nickel enzymes. Chem Rev. 2014;114[7]:4206–28.
13. Desguin B, Fellner M, Riant O, Hu J, Hausinger RP, Hols P, Soumillion P. Biosynthesis of the nickel-pincer nucleotide cofactor of lactate racemase requires a CTP-dependent cyclometallase. J Biol Chem. 2018;293[32]:12303–17.
14. Min EY, Cha YJ, Kang JC. Environ Sci Pollut Res. 2015;22[19]:13546–55.
15. Kubicka K, Samecka-Cymerman A, Kolon K, Kosiba P, Kempers AJ. Trace element accumulation in plants growing on heaps after Zn-Pb ore mining and processing. Environ Sci Pollut Res. 2015;22[1]:527–34.
16. Kumar S, Trivedi AV. Int J Curr Microbiol Appl Sci. 2016;5[3]:719–27.
17. Guo H, Liu H, Wu H, Cui H, Fang J, Zuo Z, et al. Nickel-induced neurotoxicity: Oxidative stress and apoptosis in PC12 cells. Int J Mol Sci. 2019;20[19]:4690.
18. Guldan H, Sterner R, Babinger P. Identification and characterization of a bacterial glycerol-1-phosphate dehydrogenase: Ni[2+]-dependent AraM from Bacillus subtilis. Biochemistry. 2008;47[2]:376–84.
19. Merkens H, Kappl R, Jakob RP, Schmid FX, Fetzner S. Quercetinase QueD of Streptomyces sp. FLA, a monocupin dioxygenase with a preference for nickel and cobalt. Biochemistry. 2008;47[46]:12185–96.
20. Reimann C, Birke M, Demetriades A, Filzmoser P, O’Connor P. Chemistry of Europe’s agricultural soils – Part B: General background information and further analysis of the GEMAS data set. Geol Jahrb Reihe B. 2014;103:352.
21. Van der Voet E, Salminen R, Eckelman M, Norgate T, Mudd G, Hischier R, et al. Environmental risks and challenges of anthropogenic metals flows and cycles. Nairobi [KE]: United Nations Environment Programme; 2013. Report No.: 3. ISBN: 9789280732665.
22. Ministry of the Environment Finland [MEF]. Government decree on the assessment of soil contamination and remediation needs. Helsinki [FI]: MEF; 2007.
23. Hussain MI, Qureshi AS. Health risks of heavy metal exposure and microbial contamination through consumption of vegetables irrigated with treated wastewater at Dubai, UAE. Environ Sci Pollut Res. 2020;27[10]:11213–26.
24. Ishaq M, Khalid J, Qaiser Z, Sarfraz W, Ejaz U, Naeem N, et al. Nickel contamination, toxicity, tolerance, and remediation approaches in terrestrial biota. In: Zaidi S, Wani PA, editors. Bio-organic amendments for heavy metal remediation. Amsterdam: Elsevier; 2024. p. 479–97.
25. Li M, Pi M, Yang Z, Reiter RJ, Xu S, Chen X, et al. Melatonin antagonizes cadmium-induced neurotoxicity by activating the transcription factor EB-dependent autophagy–lysosome machinery in mouse neuroblastoma cells. J Pineal Res. 2016;61[3]:353–69. doi:10.1111/jpi.12353.
26. Kim HS, Kim YJ, Seo YR. An overview of carcinogenic heavy metal: molecular toxicity mechanism and prevention. J Cancer Prev. 2015;20[4]:232–40.
27. World Health Organization [WHO]. Permissible limits of heavy metals in soil and plants. Geneva [CH]: WHO; 1996.
28. Antoniadis V, Levizou E, Shaheen SM, Ok YS, Sebastian A, Baum C, et al. Trace elements in the soil-plant interface: phytoavailability, translocation, and phytoremediation – a review. Earth Sci Rev. 2017;171:621–45. doi:10.1016/j.earscirev.2017.06.005.
29. Hussain J, Husain I, Arif M, Gupta N. Studies on heavy metal contamination in Godavari river basin. Appl Water Sci. 2017;7[9]:4539–48.
30. Keller VDJ, Whelan MJ, Rees HG. A global assessment of chemical effluent dilution capacities from a macro-scale hydrological model. In: Demuth S, Gustard A, Planos E, Scatena F, Servat E, editors. Climate variability and change – hydrological impacts. Wallingford [UK]: International Association of Hydrological Sciences; 2006. p. 586–90.
31. Rauch N, Pacyna JM. Global emissions of trace elements from anthropogenic sources. Glob Biogeochem Cycles. 2009;23[2]:1–16.
32. ICP Vegetation. Heavy metals in European mosses: survey [2005] monitoring manual. Bangor [UK]: UNECE ICP Vegetation Coordination Centre, CEH Bangor; 2006.
33. Prueitt RL, Li W, Chang YC, Boffetta P, Goodman JE. Evaluation of studies on nickel and cancer with emphasis on occupational exposure. Crit Rev Toxicol. 2020;50[7]:605–39.
34. Poonkothai M, Vijayavathi BS. Estimation of heavy metals in various samples using atomic absorption spectrophotometer. Int J Environ Sci. 2012;1[4]:285–8.
35. Lenntech. Nickel and water: reaction mechanisms, environmental impact and health effects [Internet]. Netherlands: Lenntech; 2022 Jan 13 [cited 2025 Jul 1].
36. Central Water Commission [CWC], Ministry of Water Resources, River Development and Ganga Rejuvenation, Government of India. Status of trace and toxic metals in Indian rivers: river data compilation. New Delhi [IN]: CWC; 2018.
37. Shrestha R, Ban S, Devkota S, Sharma S, Joshi R, Tiwari AP, Joshi MK. Technological trends in heavy metals removal from industrial wastewater: a review. J Environ Chem Eng. 2021;9[4]:105688.
38. Said I, Hursthouse A, Salman SAER. Identification of pollution sources in roadside soils of Cairo-Alexandria Highway, Egypt. Arab J Geosci. 2021;14[11]:981.
39. Peter AE, Menon JS, George M, Nagendra SS, Khare M. Composition, sources, and health risk assessment of particulate matter at two different elevations in Delhi city. Atmos Pollut Res. 2022;13[2]:101295.
40. Cempel M, Nikel G. Nickel: A review of its sources and environmental toxicology. Pol J Environ Stud. 2005;15[3]:375–82.
41. Brown PH, Welch RM, Cary EE. Nickel: a micronutrient essential for higher plants. Plant Physiol. 1987;85[3]:801–3.
42. Ahmad K, Rani S, Khan ZI, Akhtar S, Ashfaq A, Anwar I, Bashir A. Effects of fertilizers on copper and nickel accumulation and human health risk assessment of vegetables and food crops. J Bioresour Manag. 2023;10[1]:9.
43. Brown PH. Nickel. In: Barker AV, Pilbeam DJ, editors. Handbook of plant nutrition. New York: CRC Press; 2007. p. 395–402.
44. Seregin IV, Kozhevnikova AD. Physiological role of nickel and its toxic effects on higher plants. Fiziol Rast. 2006;53:285–308.
45. Rahman H, Sabreen S, Alam S, Kawai S. Effects of nickel on growth and composition of metal micronutrients in barley plants grown in nutrient solution. J Plant Nutr. 2005;28[3]:393–404.
46. Gajewska E, Skłodowska M, Słaba M, Mazur J. Effect of nickel on antioxidative enzyme activities, proline and chlorophyll contents in wheat shoots. Biol Plant. 2006;50[4]:653–9.
47. Aziz EE, Gad N, Badran NM. Effect of cobalt and nickel on plant growth, yield and flavonoids content of Hibiscus sabdariffa L. Aust J Basic Appl Sci. 2007;1:73–8.
48. Harish, Sundaramoorthy S, Kumar D, Vaijapurkar SG. A new chlorophycean nickel hyperaccumulator. Bioresour Technol. 2008;99:3930–4.
49. Dixon NE, Gazzola C, Blakeley RL, Zerner B. Jack bean urease [EC 3.5.1.5]. Metalloenzyme. Simple biological role for nickel. J Am Chem Soc. 1975;97:4131–3.
50. Evans HJ, Harker AR, Papen H, Russell SA, Hanus FJ, Zuber M. Physiology, biochemistry, and genetics of the uptake hydrogenase in rhizobia. Annu Rev Microbiol. 1987;41:335–61.
51. Eskew DL, Welch RM, Cary EE. Nickel: an essential micronutrient for legumes and possibly all higher plants. Science. 1983;222[4624]:621–3.
52. Mustafiz A, Ghosh A, Tripathi AK, Kaur C, Ganguly AK, Bhavesh NS. A unique Ni²⁺-dependent and methylglyoxal-inducible rice glyoxalase I possesses a single active site and functions in abiotic stress response. Plant J. 2014;78:951–63.
53. Harish, Sundaramoorthy S, Kumar D, Vaijapurkar SG. A new chlorophycean nickel hyperaccumulator. Bioresour Technol. 2008;99:3930–4.
54. Bai C, Liu L, Wood BW. Nickel affects xylem sap RNase A and converts RNase A to a urease. BMC Plant Biol. 2013;13:1–9.
55. Bybordi A, Gheibi MN. Growth and chlorophyll content of canola plants supplied with urea and ammonium nitrate in response to various nickel levels. Not Sci Biol. 2009;1:55–8.
56. Gheibi M, Malakouti M, Kholdebarin B, Ghanati F, Teimouri S, Sayadi R. Significance of nickel supply for growth and chlorophyll content of wheat supplied with urea or ammonium nitrate. J Plant Nutr. 2009;32:1440–50.
57. Khoshgoftarmanesh AH, Hosseini F, Afyuni M. Nickel supplementation effect on the growth, urease activity and urea and nitrate concentrations in lettuce supplied with different nitrogen sources. Sci Hortic. 2011;130:381–5.
58. Kutman BY, Kutman UB, Cakmak I. Nickel-enriched seed and externally supplied nickel improve growth and alleviate foliar urea damage in soybean. Plant Soil. 2013;363[1]:61–75.
59. Gerendás J, Sattelmacher B. Influence of Ni supply on growth and nitrogen metabolism of Brassica napus L. grown with NH₄NO₃or urea as N source. Ann Bot. 1999;83:65–71.
60. Alibakhshi M, Khoshgoftarmanesh AH. Effects of nickel nutrition in the mineral form and complexed with histidine in the nitrogen metabolism of onion bulb. Plant Growth Regul. 2015;75:733–40. doi:10.1007/s10725-014-9975-z.
61. Gad N, El-Sherif MH, El-Gereedly NHM. Influence of nickel on some physiological aspects of tomato plants. Aust J Basic Appl Sci. 2007;3:286–93. doi:10.1002/tox.20470.
62. Tabatabaei SJ. Supplements of nickel affect yield, quality, and nitrogen metabolism when urea or nitrate is the sole nitrogen source for cucumber. J Plant Nutr. 2009;32[5]:713–24. doi:10.1080/01904160902787834.
63. Lavres J, Franco GC, Câmara GMS. Soybean seed treatment with nickel improves biological nitrogen fixation and urease activity. Front Environ Sci. 2016;4:37. doi:10.3389/fenvs.2016.00037.
64. Kutman BY, Kutman UB, Cakmak I. Nickel-enriched seed and externally supplied nickel improve growth and alleviate foliar urea damage in soybean. Plant Soil. 2013;363[1]:61–75. doi:10.1007/s11104-012-1284-6.
65. Kutman BY, Kutman UB, Cakmak I. Effects of seed nickel reserves or externally supplied nickel on the growth, nitrogen metabolites and nitrogen use efficiency of urea- or nitrate-fed soybean. Plant Soil. 2014;376:261–76. doi:10.1007/s11104-013-1983-7.
66. Bertrand D, De Wolff A. Importance du nickel, comme oligoélément, pour les Rhizobium des nodosités des légumineuses. C R Acad Sci Paris. 1973;276:1855–8.
67. de Macedo FG, Bresolin JD, Santos EF, Furlan F, Lopes da Silva WT, Polacco JC, Lavres J. Nickel availability in soil as influenced by liming and its role in soybean nitrogen metabolism. Front Plant Sci. 2016;7:1358. doi:10.3389/fpls.2016.01358.
68. González-Guerrero M, Matthiadis A, Sáez Á, Long TA. Fixating on metals: new insights into the role of metals in nodulation and symbiotic nitrogen fixation. Front Plant Sci. 2014;5:45. doi:10.3389/fpls.2014.00045.
69. Khan A, Khan AA, Irfan M. Effects of different concentrations of nickel [Ni] on the vegetative and reproductive growth parameters of Nigella sativa L. Gesunde Pflanzen. 2023;75[3]:677–686.
70. Vogel-Mikus K, Drobne D, Regvar M. Zn, Cd and Pb accumulation and arbuscular mycorrhizal colonization of pennycress Thlaspi praecox Wulf. [Brassicaceae] from the vicinity of a lead mine and smelter in Slovenia. Environ Pollut. 2005;133:233–242.
71. Peralta-Videa JR, Gardea-Torresdey JL, Gomez EL, Tiemann KJ, Parsons JG, Carrillo G. Effect of mixed cadmium, copper, nickel and zinc at different pHs upon alfalfa growth and heavy metal uptake. Environ Pollut. 2002;119:291–301.
72. Neumann PM, Chamel A. Comparative phloem mobility of nickel in nonsenescent plants. Plant Physiol. 1986;81:689–691.
73. Page V, Weisskopf L, Feller U. Heavy metals in white lupin: uptake, root-to-shoot transfer and redistribution within the plant. New Phytol. 2006;171:329–341.
74. Chen H, Huang D, Liu J. Functions and toxicity of nickel in plants: recent advances and future prospects. CLEAN–Soil Air Water. 2009;37[4-5]:304–313. doi:10.1002/clen.200800199.
75. Rooney CP, Zhao FJ, McGrath SP. Phytotoxicity of nickel in a range of European soils: influence of soil properties, Ni solubility and speciation. Environ Pollut. 2007;145:596–605.
76. Rautaray SK, Ghosh BC, Mittra BN. Effect of fly ash, organic wastes and chemical fertilizers on yield, nutrient uptake, heavy metal content and residual fertility in a rice-mustard cropping sequence under acid lateritic soils. Bioresour Technol. 2003;90[3]:275–283.
77. Karaca A. Effect of organic wastes on the extractability of cadmium, copper, nickel, and zinc in soil. Geoderma. 2004;122[4]:297–303.
78. Alloway BJ. In: Alloway BJ, editor. Heavy metals in soils. 2nd ed. London: Blackie Academic and Professional; 1995. p. 25–34.
79. Dalir N, Khoshgoftarmanesh AH. Symplastic and apoplastic uptake and root to shoot translocation of nickel in wheat as affected by exogenous amino acids. J Plant Physiol. 2014;171[7]:531–536.
80. Yusuf M, Fariduddin Q, Hayat S, Ahmad A. Nickel: An overview of uptake, essentiality and toxicity in plants. Bull Environ Contam Toxicol. 2011;86[1]:1–17. doi:10.1007/s00128-010-0171-1.
81. Page V, Feller U. Heavy metals in crop plants: Transport and redistribution processes on the whole plant level. Agron. 2015;5[3]:447–63.
82. Aydaş SSB, Acik L, Leduc D, Adigüzel N, Ellialtioğlu ŞŞ, Suludere Z, Kadioğlu YK. Localization and distribution of nickel and other elements in in-vitro grown Alyssum corsicum exhibiting morphological changes in trichomes: initial insights into molecular mechanisms of nickel hyperaccumulation. Turk J Bot. 2013;37[6]:1115–24.
83. Psaras GK, Manetas Y. Nickel localization in seeds of the metal hyperaccumulator Thlaspi pindicum Hausskn. Ann Bot. 2001;88[3]:513–6.
84. Seregin IV, Kozhevnikova AD, Kazyumina EM, Ivanov VB. Nickel toxicity and distribution in maize roots. Russ J Plant Physiol. 2003;50[5]:711–7.
85. De Kock PC. Nickel in plant growth. Ann Bot. 1956;20:133–41.
86. Aschmann SG, Zasoski RJ. Nickel toxicity in Italian ryegrass. Physiol Plant. 1987;71:191–6.
87. Ochiai EI. Bioinorganic Chemistry: An Introduction. Allyn and Bacon Chemistry Series. Boston: Allyn and Bacon; 1977. ISBN: 0205054439, 9780205054435.
88. Robertson AI, Meakin MER. The effect of nickel on cell division and growth of Brachystegia spiciformis seedlings. Kirkia. 1980;115–25.
89. Shi G, Cai Q. Leaf plasticity in peanut [Arachis hypogea L.] in response to heavy metal stress. Environ Exp Bot. 2009;67:112–7.
90. Bhalerao SA, Sharma AS, Poojari AC. Toxicity of nickel in plants: a review. Int J Pure Appl Biosci. 2015;3:345–55.
91. Molas J. Changes in morphological and anatomical structure of cabbage [Brassica oleracea L.] outer leaves and in ultrastructure of their chloroplasts caused by an in vitro excess of nickel. Photosynthetica. 1997;34[4]:513–22.
92. Pandey N, Sharma CP. Effect of heavy metals Co²⁺, Ni²⁺and Cd²⁺on growth and metabolism of cabbage. Plant Sci. 2002;163[4]:753–8.
93. Saad R, Kobaissi A, Robin C, Echevarria G, Benizri E. Nitrogen fixation and growth of Lens culinaris as affected by nickel availability: a pre-requisite for optimization of agromining. Environ Exp Bot. 2016;131:1–9.
94. Bazihizina N, Redwan M, Taiti C, Giordano E, Monetti E, Masi E, et al. Responses of Arabidopsis thaliana to nickel stress under hydroponic conditions. J Plant Physiol. 2015;174:137–46.
95. Bishnoi NR, Sheoran IS, Singh R. Influence of cadmium and nickel on photosynthesis and water relations in wheat leaves of different insertion level. Photosynthetica. 1993;28:473–9.
96. Seregin IV, Ivanov VB. Physiological aspects of cadmium and lead toxic effects on higher plants. Russ J Plant Physiol. 2001;48:523–44..
97. Ahmad MSA, Hussain M, Saddiq R, Alvi AK. Mungbean: a nickel indicator, accumulator or excluder? Bull Environ Contam Toxicol. 2007;78:319–24.
98. Rao KVM, Sresty TV. Antioxidative parameters in the seedlings of pigeonpea [Cajanus cajan[L.] Millspaugh] in response to Zn and Ni stresses. Plant Sci. 2000;157[1]:113–28.
99. Llamas CI, Ullrich A, Sanz A. Nickel triggers the iron deficiency response in Arabidopsis thaliana. J Plant Biol. 2008;46:905–10.
100. Gajewska E, Skłodowska M. Nickel-induced changes in nitrogen metabolism in wheat shoots. BioMetals. 2007;20:27–36.
101. Khaliq A, Ali S, Hameed A, Farooq MA, Farid M, Shakoor MB, et al. Silicon alleviates nickel toxicity in cotton seedlings through enhancing growth, photosynthesis and suppressing Ni uptake and oxidative stress. Arch Agron Soil Sci. 2015.
102. Anjum SA, Tanveer M, Hussain S, Bao M, Wang L, Khan I, et al. Cadmium toxicity in maize [Zea mays L.]: consequences on antioxidative systems, reactive oxygen species and cadmium accumulation. Environ Sci Pollut Res. 2015;22:17022–30..
103. Shahzad B, Tanveer M, Zhao C, Rehman A, Cheema SA, Rehman SU, et al. Role of 24-epibrassinolide [EBL] in mediating heavy metal and pesticide-induced oxidative stress in plants. Ecotoxicol Environ Saf. 2018;147:935–44.
104. Kamran MA, Eqani SAMAS, Bibi S, Xu R-K, Amna, Monis MFH, et al. Bioaccumulation of nickel by Eruca sativa and role of plant growth promoting rhizobacteria [PGPRs] under nickel stress. Ecotoxicol Environ Saf. 2016;126:256–63.
105. Zhang L, Angle JS, Chaney RL. Do high-nickel leaves shed by the nickel hyperaccumulator Alyssum murale inhibit seed germination of competing plants? New Phytol. 2007;173:509–16.
106. Rao KVM, Sresty TVS. Antioxidative parameters in the seedlings of pigeon pea [Cajanus cajan[L.] Millspaugh] in response to Zn and Ni stresses. Plant Sci. 2000;157:113–28.
107. Bhardwaj R, Arora N, Sharma P, Arora HK. Effects of 28-homobrassinolide on seedling growth, lipid peroxidation and antioxidative enzyme activities under nickel stress in seedlings of Zea mays L. Asian J Plant Sci. 2007;6[5]:765–72.
108. Gajewska E, Sklodowska M. Differential biochemical responses of wheat shoots and roots to nickel stress: antioxidative reactions and proline accumulation. Plant Growth Regul. 2008;54:179–88.
109. Sharma P, Bhardwaj R, Arora N, Arora HK, Kumar A. Effects of 28-homobrassinolide on nickel uptake, protein content and antioxidative defense system in Brassica juncea. Biol Plant. 2008;52:767–70.
110. Altaf MA, Hao Y, He C, Mumtaz MA, Shu H, Fu H, Wang Z. Physiological and biochemical responses of pepper [Capsicum annuum L.] seedlings to nickel toxicity. Front Plant Sci. 2022;13:950392.
111. Boominathan R, Doran PM. Nickel-induced oxidative stress in roots of Ni hyperaccumulator Alyssum bertolonii. New Phytol. 2002;156:205–15.
112. Pandey N, Sharma CP. Effect of heavy metals Co²⁺, Ni²⁺and Cd²⁺on growth and metabolism of cabbage. Plant Sci. 2002;163:753–8.
113. Seregin IV, Kozhevnikova AD, Kazyumina EM, Ivanov VB. Nickel toxicity and distribution in maize roots. Russ J Plant Physiol. 2003;50:711–7.
114. Samantaray S, Rout GR, Das P. Tolerance of rice to nickel in nutrient solution. Biol Plant. 1997;40:295–8.
115. Jahan MS, Guo S, Baloch AR, Sun J, Shu S, Wang Y, et al. Melatonin alleviates nickel phytotoxicity by improving photosynthesis, secondary metabolism and oxidative stress tolerance in tomato seedlings. Ecotoxicol Environ Saf. 2020;197:110593.
116. Krupa Z, Baszyński T. Some aspects of heavy metals toxicity towards photosynthetic apparatus: direct and indirect effects on light and dark reactions. Acta Physiol Plant. 1995;17:177–90.
117. Gabbrielli A, Pandolfini T, Vergnano O, Palandri MR. Comparison of two serpentine species with different nickel tolerance strategies. Plant Soil. 1990;122:271–7.
118. Ahmad MSA, Hussain M, Saddiq R, Alvi AK. Mungbean: a nickel indicator, accumulator or excluder. Bull Environ Contam Toxicol. 2007;78:319–24.
119. Liu WX. Accumulation and translocation of toxic heavy metals in winter wheat [Triticum aestivum L.] growing in agricultural soil of Zhengzhou, China. Bull Environ Contam Toxicol. 2008;82:343–7.
120. Boisvert S, Joly D, Leclerc S, Govindachary S, Harnois J, Carpentier R. Inhibition of the oxygen-evolving complex of photosystem II and depletion of extrinsic polypeptides by nickel. Biometals. 2007;20:879–89.
121. Küpper H, Küpper F, Spiller M. Environmental relevance of heavy metal-substituted chlorophylls using the example of water plants. J Exp Bot. 1996;47:259–66.
122. Aziz H, Sabir M, Ahmad HR, Aziz T, Rehman MZ, Hakeem KR, Ozturk M. Alleviating effect of calcium on nickel toxicity in rice. Clean Soil Air Water. 2015;42[9999]:1–9.
123. Wang Y, Wang S, Nan J, Ma F, Zang Y, Chen Y, et al. Effects of Ni stress on the uptake and translocation of Ni and other mineral nutrition elements in mature wheat grown in sierozems from northwest of China. Environ Sci Pollut Res. 2015;22:19756–63.
124. Reddy SR. Principles of crop production: growth regulators and growth analysis. 2nd ed. Ludhiana: Kalyani Publishers; 2004.
125. Shukla R, Gopal R. Excess nickel alters growth, metabolism, and translocation of certain nutrients in potato. J Plant Nutr. 2009;32:1005–14.
126. Ashraf MY, Sadiq R, Hussain M, et al. Toxic effect of nickel [Ni] on growth and metabolism in germinating seeds of sunflower [Helianthus annuus L.]. Biol Trace Elem Res. 2011;143:1695–703.
127. Yu-chen G, Liu YY, Wang RY, Wang S, Lu XP, Wang B. Effect of mercury stress on photosynthetic characteristics of two kinds of warm season turf grass. Int J Environ Monit Anal. 2015;3:293–7.
128. Alam MM, Hayat S, Ali B, Ahmad A. Effect of 28-homobrassinolide treatment on nickel toxicity in Brassica juncea. Photosynthetica. 2007;45:139–42.
129. Nawaz MA, Jiao Y, Chen C, Shireen F, Zheng Z, Imtiaz M, et al. Melatonin pretreatment improves vanadium stress tolerance of watermelon seedlings by reducing vanadium concentration in the leaves and regulating melatonin biosynthesis and antioxidant-related gene expression. J Plant Physiol. 2018;220:115–27.
130. Jahan MS, Guo S, Baloch AR, Sun J, Shu S, Wang Y, et al. Melatonin alleviates nickel phytotoxicity by improving photosynthesis, secondary metabolism and oxidative stress tolerance in tomato seedlings. Ecotoxicol Environ Saf. 2020;197:110593.
131. Hermle S, Vollenweider P, Günthardt-Goerg MS, McQuattie CJ, Matyssek M. Leaf responsiveness of Populus tremula and Salix viminalis to soil contaminated with heavy metals and acidic rainwater. Tree Physiol. 2007;27:1517–31.
132. Molas J. Changes of chloroplast ultrastructure and total chlorophyll concentration in cabbage leaves caused by excess of organic Ni[II] complexes. Environ Exp Bot. 2002;47:115–26.
133. Molas J. Changes in morphological and anatomical structure of cabbage [Brassica oleracea L.] outer leaves and in ultrastructure of their chloroplasts caused by an in vitro excess of nickel. Photosynthetica. 1997;34:513–22.
134. Ahmad MSA, Hussain M, Saddiq R, Alvi AK. Mungbean: a nickel indicator, accumulator or excluder. Bull Environ Contam Toxicol. 2007;78:319–24.
135. Lin YC, Kao CH. Proline accumulation induced by excess nickel in detached rice leaves. Biol Plant. 2007;51:351–4.
136. Maksimović I, Kastori R, Krstić L, Luković J. Steady presence of cadmium and nickel affects root anatomy, accumulation and distribution of essential ions in maize seedlings. Biol Plant. 2007;51:589–92.
137. Wheeler CT, Hughes LT, Oldroyd J, Pulford ID. 2001. Effects of nickel on Frankia and its symbiosis with Alnus glutinosa [L.]. Gaertn Plant Soil [231]:81–90
138. Baccouch S, Chaoui A, El Ferjani E. Nickel-induced oxidative damage and antioxidant responses in Zea mays shoots. Plant Physiol Biochem. 1998;36:689–94.
139. Parlak KU. Effect of nickel on growth and biochemical characteristics of wheat [Triticum aestivum L.] seedlings. Wageningen J Life Sci. 2016;76:1–5.
140. Singh K, Panday SA. Effect of nickel-stresses on uptake, pigments and antioxidative responses of water lettuce [Pistia stratiotes L]. J Environ Biol. 2010;32:391–4.
141. Heath SM, Southworth D, Allura A. Localization of nickel in epidermal subsidiary cells of leaves of Thlaspi montanum var. siskiyouense[Brassicaceae] using energy-dispersive X-ray microanalysis. Int J Plant Sci. 1997;158:184–8.
142. Pandey N, Sharma CP. Effect of heavy metals Co²⁺, Ni²⁺and Cd²⁺on growth and metabolism of cabbage. Plant Sci. 2002;163:753–8.
143. Jahan MS, Guo S, Baloch AR, Sun J, Shu S, Wang Y, et al. Melatonin alleviates nickel phytotoxicity by improving photosynthesis, secondary metabolism and oxidative stress tolerance in tomato seedlings. Ecotoxicol Environ Saf. 2020;197:110593.
144. Sheoran IS, Aggarwal N, Singh R. Effect of cadmium and nickel on in vivo carbon dioxide exchange rate of pigeon pea [Cajanus cajan L.]. Plant Soil. 1990;129:243–9.
145. Ali MA, Ashraf M, Athar HR. Influence of nickel stress on growth and some important physiological/biochemical attributes in some diverse canola [Brassica napus L.] cultivars. J Hazard Mater. 2009;172:964–9.
146. Bhatia NP, Walsh KB, Baker AJM. Detection and quantification of ligands involved in nickel detoxification in the herbaceous Ni hyperaccumulator Stackhousia tryonii Bailey. J Exp Bot. 2005;56:1343–9.
147. Freeman JL, Persans MW, Nieman K, Albrecht C, Peer W, Pickering IJ, Salt DE. Increased glutathione biosynthesis plays a role in nickel tolerance in Thlaspi nickel hyperaccumulators. Plant Cell. 2004;16[8]:2176–91..
148. Clemens S. Molecular mechanisms of plant metal tolerance and homeostasis. Planta. 2001;212:475–86.
149. Hall JL. Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot. 2002;53:1-11.
150. Zembala M, Filek M, Walas S, Mrowiec H, Kornaś A, Miszalski Z, et al. Effect of selenium on macro- and microelement distribution and physiological parameters of rape and wheat seedlings exposed to cadmium stress. Plant Soil. 2010;329:457–68.
151. Altaf MA, Shahid R, Ren MX, Altaf MM, Jahan MS, Khan LU. Melatonin mitigates nickel toxicity by improving nutrient uptake fluxes, root architecture system, photosynthesis, and antioxidant potential in tomato seedling. J Soil Sci Plant Nutr. 2021;21:1842–55.
152. Einhardt AM, Oliveira LM, Ferreira S, Araújo WL, Medeiros DB, Fernie AR, et al. Defense responses and oxidative metabolism of glyphosate-resistant soybean plants infected by Phakopsora pachyrhizi modulated by glyphosate and nickel. Physiol Mol Plant Pathol. 2022;118:101817.
153. Valivand M, Amooaghaie R, Ahadi A. Interplay between hydrogen sulfide and calcium/calmodulin enhances systemic acquired acclimation and antioxidative defense against nickel toxicity in zucchini. Environ Exp Bot. 2019;158:40–50.
154. Shaheen SM, Rinklebe J, Selim MH. Impact of various amendments on immobilization and phytoavailability of nickel and zinc in a contaminated floodplain soil. Int J Environ Sci Technol. 2015;12[9]:2765–76.
155. Mondale KD, Carland RM, Aplan FF. The comparative ion exchange capacities of natural sedimentary and synthetic zeolites. Miner Eng. 1995;8[4]:535–48.
156. Zeng G, Wan J, Huang D, et al. Precipitation, adsorption and rhizosphere effect: the mechanisms for phosphate-induced Pb immobilization in soils—a review. J Hazard Mater. 2017;339:354–67.
157. Kelly CN, Peltz CD, Stanton M, et al. Biochar application to hardrock mine tailings: soil quality, microbial activity, and toxic element sorption. Appl Geochem. 2014;43:35–48.
158. Houben D, Evrard L, Sonnet P. Mobility, bioavailability and pH-dependent leaching of cadmium, zinc and lead in a contaminated soil amended with biochar. Chemosphere. 2013;92[11]:1450–7.
159. Park JH, Choppala GK, Bolan NS, et al. Biochar reduces the bioavailability and phytotoxicity of heavy metals. Plant Soil. 2011;348[1]:439.
160. Jean L, Bordas F, Bollinger JC. Chromium and nickel mobilization from a contaminated soil using chelants. Environ Pollut. 2007;147[3]:729–36.
161. Yang ZH, Dong CD, Chen CW, et al. Using poly-glutamic acid as soil-washing agent to remediate heavy metal-contaminated soils. Environ Sci Pollut Res. 2018;25[6]:5231–42.
162. Torres LG, Lopez RB, Beltran M. Removal of As, Cd, Cu, Ni, Pb, and Zn from a highly contaminated industrial soil using surfactant enhanced soil washing. Phys Chem Earth Parts A/B/C. 2012;37–39:30–6
163. Ko I, Chang YY, Lee CH, Kim KW. Assessment of pilot-scale acid washing of soil contaminated with As, Zn and Ni using the BCR three-step sequential extraction. J Hazard Mater. 2005;127[1]:1–13.
164. Kim DH, Ryu BG, Park SW, et al. Electrokinetic remediation of Zn and Ni-contaminated soil. J Hazard Mater. 2009;165[1–3]:501–5.
165. Bahemmat M, Farahbakhsh M, Kianirad M. Humic substances-enhanced electroremediation of heavy metals contaminated soil. J Hazard Mater. 2016;312:307–18
166. Rafati M, Khorasani N, Moattar F, Shirvany A, Moraghebi F, Hosseinzadeh S. Phytoremediation potential of Populus alba and Morus alba for cadmium, chromium and nickel absorption from polluted soil. Int J Environ Res. 2011;5:961–70
167. Mukhopadhyay S, Maiti SK. Phytoremediation of metal enriched mine waste: a review. Glob J Environ Res. 2010;4:135–50
168. Singh S. Phytoremediation: A sustainable alternative for environmental challenges. Int J Green Herb Chem. 2012;1:133–9.
169. Vishnoi SR, Srivastava PN. Phytoremediation—green for environmental clean. In: Proceedings of the 12th World Lake Conference; 2007 Oct 28–Nov 2; Jaipur, India.
170. Sakai Y, Ma Y, Xu C, Wu H, Zhu W, Yang J. Phytodesalination of a salt-affected soil with four halophytes in China. J Arid Land Stud. 2012;22:17–20.
171. Jiassi A, Zorrig W, El Khouni A, Lakhdar A, Smaoui A, Abdelly C, Rabhi M. Phytodesalination of a moderately salt-affected soil by Sulla carnosa. Int J Phytoremediation. 2013;15:398–404.
172. Chaney RL, Angle JS, Baker AJM, Li YM. Method for phytomining of nickel, cobalt, and other metals from soil. US patent 6786948. 2004 Sep.
173. Jaffré T, Brooks RR, Lee J, Reeves RD. Sebertia acuminata: A hyperaccumulator of nickel from New Caledonia. Science. 1976;193:579–80.
174. Giordani C, Cecchi S, Zanchi C. Phytoremediation of soil polluted by nickel using agricultural crops. Environ Manage. 2005;36:675–81.
175. Tappero R, Peltier E, Grafe M, Heidel K, Ginder-Vogel M, Livi KJ, et al. Hyperaccumulator Alyssum murale relies on a different metal storage mechanism for cobalt than for nickel. New Phytol. 2007;175:641–54.
176. Van der Ent A, Callahan DL, Noller BN, Mesjasz-Przybylowicz J, Przybylowicz WJ, Barnabas A, Harris HH. Nickel biopathways in tropical nickel hyperaccumulating trees from Sabah [Malaysia]. Sci Rep. 2017;7:41861.
177. Grison C, Escande V, Petit E, Garoux L, Boulanger C, Grison C. Psychotria douarrei and Geissois pruinosa, novel resources for the plant-based catalytic chemistry. RSC Adv. 2013;44:22340–5.
178. Fernando ES, Quimado MO, Trinidad LC, Doronila AI. The potential use of indigenous nickel hyperaccumulators for small-scale mining. Philipp J Degrad Min Lands Manag. 2013;1:21–6.
179. Fernando ES, Quimado MO, Doronila AI. Rinorea niccolifera[Violaceae], a new, nickel-hyperaccumulating species from Luzon Island, Philippines. PhytoKeys. 2014;[37]:1–13.
180. Ma Y, Prasad MNV, Rajkumar M, Freitas H. Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnol Adv. 2011;29[2]:248–58.
181. Babu AG, Kim JD, Oh BT. Enhancement of heavy metal phytoremediation by Alnus firma with endophytic Bacillus thuringiensis GDB-1. J Hazard Mater. 2013;250–251:477–83.
182. Kamran MA, Eqani SAMAS, Bibi S, et al. Bioaccumulation of nickel by E. sativa and role of plant growth promoting rhizobacteria [PGPRs] under nickel stress. Ecotoxicol Environ Saf. 2016;126:256–63.
183. Cabello-Conejo MI, Becerra-Castro C, Prieto-Fernandez A, et al. Rhizobacterial inoculants can improve nickel phytoextraction by the hyperaccumulator Alyssum pintodasilvae. Plant Soil. 2014;379[1]:35–50.
184. Zaidi S, Usmani S, Singh BR, Musarrat J. Significance of Bacillus subtilis strain SJ-101 as a bioinoculant for concurrent plant growth promotion and nickel accumulation in Brassica juncea. Chemosphere. 2006;64[6]:991–7.
185. Basu S, Rabara R, Negi S. Towards a better greener future—an alternative strategy using biofertilizers. I: Plant growth promoting bacteria. Plant Gene. 2017;12:43–9.
186. Yang ZH, Dong CD, Chen CW, et al. Using poly-glutamic acid as soil-washing agent to remediate heavy metal-contaminated soils. Environ Sci Pollut Res Int. 2018;25[6]:5231–42.
187. Achal V, Pan X, Zhang D. Remediation of copper-contaminated soil by Kocuria flava CR1, based on microbially induced calcite precipitation. Ecol Eng. 2011;37[10]:1601–5.
188. Achal V, Pan X, Fu Q, Zhang D. Biomineralization based remediation of As[III] contaminated soil by Sporosarcina ginsengisoli. J Hazard Mater. 2012;201–202:178–84.
189. Li M, Cheng X, Guo H. Heavy metal removal by biomineralization of urease-producing bacteria isolated from soil. Int Biodeterior Biodegradation. 2013;76:81–5.
190. Achal V, Mukherjee A, Reddy MS. Characterization of two urease-producing and calcifying Bacillus spp. isolated from cement. J Microbiol Biotechnol. 2010;20[11]:1571–6.
191. Zhu X, Li W, Zhan L. The large-scale process of microbial carbonate precipitation for nickel remediation from an industrial soil. Environ Pollut. 2016;219:149–55.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright © Author(s) retain the copyright of this article.