Emerging drug formulation and delivery system for Obesity management
Abstract
Obesity has become a major global health concern, contributing significantly to metabolic disorders, cardiovascular diseases, and diminished quality of life. Conventional therapeutic strategies, including lifestyle modification and pharmacotherapy, often demonstrate limited efficacy and are associated with systemic side effects. Recent advancements in pharmaceutical technology have enabled the development of innovative drug formulations and targeted delivery systems designed to enhance therapeutic efficacy while minimizing adverse effects. These emerging approaches include nanoparticle-based carriers, liposomes, polymeric micelles, and controlled-release formulations that improve bioavailability, enable site-specific targeting, and provide sustained drug release. Furthermore, combination therapies integrating anti-obesity agents with natural bioactive compounds are being explored for their synergistic potential. This review highlights recent trends in advanced drug formulation and delivery systems for obesity management, discussing their mechanisms, advantages, and clinical applications. Collectively, these novel strategies hold great promise for achieving safer, more effective, and personalized treatment outcomes in obesity management.
References
2. World Health Organization. The world health report 2000: Health systems: improving performance. Geneva: World Health Organization; 2000. Available from: https://iris.who.int/handle/10665/42281
3. Jacob JJ, Isaac R. Behavioural therapy for management of obesity. Indian J Endocrinol Metab. 2012;16(1):28-32. Available from: https://doi.org/10.4103/2230-8210.91180
4. Prausnitz MR. Engineering microneedle patches for vaccination and drug delivery to skin. Annu Rev Chem Biomol Eng. 2017;8:177-200. Available from: https://doi.org/10.1146/annurev-chembioeng-060816-101514
5. Safaei M, Sundararajan EA, Driss M, Boulila W, Shapi’i A. A systematic literature review on obesity: understanding the causes & consequences of obesity and reviewing various machine learning approaches used to predict obesity. Comput Boil Med. 2021;136:104754. Available from: https://doi.org/10.1016/j.compbiomed.2021.104754
6. Lin X, Li H. Obesity: epidemiology, pathophysiology, and therapeutics. Front Endocrinol. 2021;12: 706978. https://doi.org/10.3389/fendo.2021.706978.
7. Uti DE, Atangwho IJ, Eyong EU, Umoru GU, Egbung GE, Nna VU, Udeozor PA. African walnuts attenuate ectopic fat accumulation and associated peroxidation and oxidative stress in monosodium glutamate-obese Wistar rats. Biomed Pharmacother. 2020;124: 109879. https://doi.org/10.1016/j.biopha.2020.109879
8. Umoru GU, Atangwho IJ, David-Oku E, Uti DE, Agwupuye EI, Obeten UN, Maitra S, Subramaniyan V, Wong LS, Aljarba NH, Kumarasamy V. Tetracarpidium conophorum nuts (African walnuts) up-regulated adiponectin and PPAR-γ expressions with reciprocal suppression of TNF-α gene in obesity. J Cell Mol Med. 2024;28: e70086. https://doi.org/10.1111/jcmm.70086.
9. Zhao Z, Ukidve A, Kim J, Mitragotri S. Targeting strategies for tissue-specific drug delivery. Cell. 2020;181(1):151-167. Available from: https://doi.org/10.1016/j.cell.2020.02.001
10. Li C, Wang J, Wang Y, Gao H, Wei G, Huang Y, Yu H, Gan Y, Wang Y, Mei L, et al. Recent progress in drug delivery. Acta Pharm Sin B. 2019;9:1145-1162. Available from: https://doi.org/10.1016/j.apsb.2019.08.003
11. Anselmo AC, Mitragotri S. An overview of clinical and commercial impact of drug delivery systems. J Control Release. 2014;190:15-28. Available from: https://doi.org/10.1016/j.jconrel.2014.04.014
12. NHS Digital. Statistics on obesity, physical activity and diet, England 2019. [cited 2019 May 16]. Available from: https://digital.nhs.uk/data-and-information/publications/statistical/statistics-on-obesity-physical-activity-and-diet/statistics-on-obesity-physical-activity-and-diet-england-2019
13. Borisenko O, Colpan Z, Dillemans B, Funch-Jensen P, Hedenbro J, Ahmed AR. Clinical indications, utilization, and funding of bariatric surgery in Europe. Obes Surg. 2015 Aug 29;25(8):1408-16. doi:10.1007/s11695-014-1537-y. Available from: https://doi.org/10.1007/s11695-014-1537-y
14. Public Health England. National mapping of weight management services: Provision of tier 2 and tier 3 services in England (2015521). Public Health England; 2015 [cited 2020 Jan 15]. Available from: https://assets.publishing.service.gov.uk/media/5a7f74d2e5274a2e8ab4c4b1/Final_Weight_Management_Mapping_Report.pdfBehl T, Kaur I, Sehgal A, Singh S, Zengin G, Negrut
15. N, Nistor-Cseppento DC, Pavel FM, Corb Aron RA, Bungau S. Exploring the genetic conception of obesity via the dual role of FoxO. Int J Mol Sci. 2021; 22:3179. doi:10.3390/ijms22063179. Available from: https://doi.org/10.3390/ijms22063179
16. McCreight LJ, Bailey CJ, Pearson ER. Metformin and the gastrointestinal tract. Diabetologia. 2016;59(3):426–435. Available from: https://doi.org/10.1007/s00125-015-3844-9
17. Bray GA, Frühbeck G, Ryan DH, Wilding JP. Management of obesity. Lancet. 2016;387(10031):1947–1956. Available from: https://doi.org/10.1016/S0140-6736(16)00271-3
18. Concha F, Prado G, Quezada J, Ramirez A, Bravo N, Flores C, Herrera J, Lopez N, Uribe D, Duarte-Silva L, Lopez-Legarrea P, Garcia-Diaz DF. Nutritional and non-nutritional agents that stimulate white adipose tissue browning. Rev Endocr Metab Discord. 2019;20(2):161–171. Available from: https://doi.org/10.1007/s11154-019-09495-y
19. Peng M, Ping H, Chun-Yang X, Bi-Yu H, Qiang G-F, Guan-Hua D. Recent developments in natural products for white adipose tissue browning. Chin J Nat Med. 2020;18(11):803–817. Available from: https://doi.org/10.1016/S1875-5364(20)60021-8
20. Stanford KI, Middelbeek RJ, Townsend KL, An D, Nygaard EB, Hitchcox KM, Markan KR, Nakano K, Hirshman MF, Tseng Y-H. Brown adipose tissue regulates glucose homeostasis and insulin sensitivity. J Clin Investig. 2012;123(1):215–223. Available from: https://doi.org/10.1172/JCI62308
21. Kolli V, Stechschulte LA, Dowling AR, Rahman S, Czernik PJ, Lecka-Czernik B. Partial agonist, telmisartan, maintains PPARγ serine 112 phosphorylation, and does not affect osteoblast differentiation and bone mass. PLoS ONE. 2014;9(5):e96323. Available from: https://doi.org/10.1371/journal.pone.0096323
22. Hiradate R, Khalil IA, Matsuda A, Sasaki M, Hida K, Harashima H. A novel dual-targeted rosiglitazone-loaded nanoparticle for the prevention of diet-induced obesity via the browning of white adipose tissue. J Control Release. 2021;329:665–675. Available from: https://doi.org/10.1016/j.jconrel.2020.10.019
23. Agius R, Pace NP, Fava S. Phenotyping obesity: a focus on metabolically healthy obesity and metabolically unhealthy normal weight. Diabetes Metab Res Rev. 2024;40(2):e3725. Available from: https://doi.org/10.1002/dmrr.3725
24. Janota O, Mantovani M, Kwiendacz H, Irlik K, Bucci T, Lam SHM, et al. Metabolically “extremely unhealthy” obese and non-obese people with diabetes and the risk of cardiovascular adverse events: the Silesia Diabetes-Heart Project. Cardiovasc Diabetol. 2024;23:326. Available from: https://doi.org/10.1186/s12933-024-02420-x
25. Jung HN, Jung CH, Hwang YC. Sarcopenia in youth. Metabolism. 2023;144:155557. Available from: https://doi.org/10.1016/j.metabol.2023.155557
26. Park HK, Ahima RS. Endocrine disorders associated with obesity. Best Pract Res Clin Obstet Gynaecol. 2023;90:102394. Available from: https://doi.org/10.1016/j.bpobgyn.2023.102394
27. El Meligi AA, Ahmed RM, Shaltout I, Soliman AR. Exploring obesity-related endocrine disorders beyond diabetes: a narrative review. Egypt J Intern Med. 2024;36(1):90. Available from: https://doi.org/10.1186/s43162-024-00358-w
28. Lichtman SW, Pisarka MJ, Berman ER, Pestone M, Dowling H, Roberts SB. Discrepancy between self-reported and actual caloric intake and exercise in obese subjects. N Engl J Med. 1992;327(27):1893–1898. Available from: https://doi.org/10.1056/NEJM199212313272701
29. Poppitt SD, Swann D, Black AE, Prentice AM. Assessment of selective under-reporting of food intake by both obese and non-obese women in a metabolic facility. Int J Obes Relat Metab Disord. 1998;22(3):303–311. Available from: https://doi.org/10.1038/sj.ijo.0800584
30. Blundell JE, Macdiarmid JI. Passive overconsumption: fat intake and short-term energy balance. Ann N Y Acad Sci. 1997;827:392–407. Available from: https://doi.org/10.1111/j.1749-6632.1997.tb51850.x
31. Spiegelman BM, Flier JS. Obesity and the regulation of energy balance. Cell. 2001;104(4):531–543. Available from: https://doi.org/10.1016/s0092-8674(01)00240-9
32. Luscombe ND, Clifton PM, Noakes M, Wittert G, Caterson ID. Effect of a high-protein, energy-restricted diet on weight loss and energy expenditure after weight stabilization in hyperinsulinemic subjects. Int J Obes Relat Metab Disord. 2003;27(4):558–901. Available from: https://doi.org/10.1038/sj.ijo.0802235
33. Prentice AM, Jebb SA. Obesity in Britain: gluttony or sloth? BMJ. 1995;311(6998):437–439. Available from: https://pubmed.ncbi.nlm.nih.gov/7640595
34. Levine JA, Kotz CM. NEAT—non-exercise activity thermogenesis—egocentric & geocentric environmental factors vs. biological regulation. Physiol Scand. 2005;184(4):309–318. Available from: https://pubmed.ncbi.nlm.nih.gov/16026422
35. Slentz CA, Aiken LB, Houmard JA, et al. Inactivity, exercise, and visceral fat: STRRIDE—a randomized, controlled study of exercise intensity and amount. J Appl Physiol. 2005;99(4):1613–1618. Available from: https://pubmed.ncbi.nlm.nih.gov/16002776
36. Howell NA, Booth GL. The weight of place: built environment correlates of obesity and diabetes. Endocr Rev. 2022;43(6):966–983. doi:10.1210/endrev/bnac005. Available from: https://doi.org/10.1210/endrev/bnac005
37. Lam TM, Vaartjes I, Grobbee DE, Karssenberg D, Lakerveld J. Associations between the built environment and obesity: an umbrella review. Int J Health Geogr. 2021;20:7. doi:10.1186/s12942-021-00260-6. Available from: https://doi.org/10.1186/s12942-021-00260-6
38. Monda A, de Stefano MI, Villano I, Allocca S, Casillo M, Messina A, et al. Ultra-processed food intake and increased risk of obesity: a narrative review. Foods. 2024;13:2627. doi:10.3390/foods13162627. Available from: https://doi.org/10.3390/foods13162627
39. Poirier P, Giles TD, Bray GA, Hong Y, Stern JS, Pi-Sunyer FX, et al. Obesity and cardiovascular disease: pathophysiology, evaluation, and effect of weight loss. Arterioscler Thromb Vasc Biol. 2006;26(5):968–976. doi:10.1161/01.ATV.0000216787.85457.f3. Available from: https://doi.org/10.1161/01.ATV.0000216787.85457.f3
40. Kok P, Seidell JC, Meinders AE. The value and limitations of the body mass index (BMI) in the assessment of the health risks of overweight and obesity. Ned Tijdschr Geneeskd. 2004;148(48):2379–2382. Available from: https://pubmed.ncbi.nlm.nih.gov/15615272
41. Wang T, Xu M, Bi Y, Ning G. Interplay between diet and genetic susceptibility in obesity and related traits. Front Med. 2018;12(6):601–607. doi:10.1007/s11684-018-0648-6. Available from: https://doi.org/10.1007/s11684-018-0648-6.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright © Author(s) retain the copyright of this article.
